Analyse der inflammatorischen Potenz mikro- bis nanostrukturierter Materialoberflächen auf primäre humane Makrophagen

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Biologin Nora Emilie Paul
aus Aachen

Berichter: Universitätsprofessor Dr. rer. nat. G. Zwadlo-Klarwasser
Universitätsprofessor Dr. rer. nat. K. Wolf

Tag der mündlichen Prüfung: 05. September 2008

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
Für Lore
Inhaltsverzeichnis

1. EINLEITUNG .. 1

1.1 Makrophagen .. 1
1.1.1 Heterogenität: klassisch und alternativ aktivierter Makrophage 2
1.1.2 Die funktionsassoziierten Oberflächenmarker 27E10 und CD163 3
1.2 Cytokine und Chemokine .. 5
1.3 Biomaterialien und Biokompatibilität ... 6
1.4 Reaktion von Makrophagen auf Implantate ... 7
1.5 Topographische Kontrolle .. 8
1.6 Erzeugung einer transgenen Makrophagen-Zelllinie .. 9
1.6.1 Konstrukte und Plasmide .. 10
1.6.2 THP-1-Zelllinie ... 11
1.7 Ziele der Arbeit .. 12

2. MATERIAL UND METHODEN ... 14

2.1 Herstellung und Charakterisierung der PVDF-Oberflächen 14
2.1.1 Material .. 14
2.1.2 Spincoating der PVDF-Schicht .. 14
2.1.3 Laserstrukturierung der PVDF-Proben ... 14
2.1.4 Reinigung der laserstrukturierten PVDF-Proben .. 15
2.1.5 PVDF-Schmelzpressfolie .. 15
2.1.6 Physikalische und chemische Charakterisierung der Materialoberflächen 15
2.2 Isolierung von primären humanen Monozyten .. 15
2.3 Herstellung von autologem Serum ... 16
2.4 Herstellung von Cytospinpräparaten ... 16
2.5 Kultivierung der Monozyten ... 17
2.6 Ernten der differenzierten Makrophagen ... 17
2.7 Licht- und fluoreszenzmikroskopische Analyse .. 17
2.8 Durchflusszytometrie ... 17
2.9 Messung inflammatorischer Mediatoren im Kulturüberstand 18
2.10 RNA-Isolierung und RT-PCR .. 18
2.11 Genexpressionsanalyse mittels DNA microarray .. 18
2.12 Statistische Auswertung .. 19
2.13 Kultivierung von THP-1-Zellen .. 19
2.13.1 Einfrieren von THP-1-Zellen ... 19
2.13.2 Dosis-Wirkungsabhängigkeit der Antibiotika für die Selektion positiver Klone .. 19
2.14 Isolation von genomischer DNA ... 20
2.15 Polymerase-Kettenreaktion (PCR) ... 20
2.16 Agarose-Gelelektrophorese ... 21
2.17 Extraktion von DNA-Fragmenten aus Agarosegelen ... 21
2.18 Restriktion von DNA ... 22
2.19 Ligation von DNA-Fragmenten .. 22
Inhaltsverzeichnis

2.20 Sequenzierung ... 23
2.21 Herstellung chemisch kompetenter Bakterien (CaCl₂-Methode) ... 23
2.22 Transformation chemisch kompetenter Bakterien („Hitzeschock“) .. 24
2.23 Plasmidisoliierung aus Bakterien ... 24
2.23.1 Wizard Plus SV Minipreps DNA Purification System ... 24
2.23.2 Endotoxin-freie Plasmidisoliierung ... 24
2.24 Transformation von THP-1-Zellen (Nucleofection) ... 25
2.25 Selektion positiver Klone (limited dilution) ... 25
2.26 Cell Sorting .. 25

3. RESULTATE ... 27
3.1 Herstellung und Charakterisierung der PVDF-Oberflächen .. 27
3.2 Einfluss der Topographie auf primäre humane Makrophagen ... 30
3.2.1 Reinheit der isolierten Monozyten ... 30
3.2.2 Effekt der Topographie auf die Morphologie .. 30
3.2.3 Effekt der Topographie auf die Expression funktionsassoziierter Oberflächenmarker 31
3.2.4 Effekt der Topographie auf die Freisetzung inflammatorischer Mediatoren 32
3.2.5 Effekt der Topographie auf die Genexpression ... 37
3.3 Stabile Transfektion von THP-1-Zellen ... 40
3.3.1 Expressionsrate von 27E10 auf THP-1-Zellen .. 40
3.3.2 Klonierungsstrategie ... 41
3.3.3 Stabile Klone ... 41

4. DISKUSSION ... 48
5. ZUSAMMENFASSUNG ... 58
6. SUMMARY .. 60
7. LITERATURVERZEICHNIS .. 62
Abbildung 1.1: Überblick über die Differenzierung von Makrophagen .. 2
Abbildung 1.2: Plasmidkarte der Vektoren pDsRed-Monomer-N1 (oben) und pAcGFP1-Hyg-
N1 (unten). .. 11
Abbildung 1.3: Vergleich der Morphologie von primären humanen Makrophagen (links) und
PMA-stimulierten THP-1-Zellen (rechts) nach viertägiger Kultivierung 12
Abbildung 2.1: dot plots für die Sortierung von Klon2 und Klon6. 26
Abbildung 3.1: WIM-Aufnahmen und X-Profilanalyse der (A) Kontrolle, der (B) Nanostruktur,
der (C) Rillenstruktur und der (D) Noppenstruktur ... 28
Abbildung 3.2: XPS-Spektren der Kontrolle (links) und der Noppenstruktur (rechts) 29
Abbildung 3.3: Kontaktwinkel der verschieden strukturierten PVDF-Oberflächen 29
Abbildung 3.4: Cytospin-Präparate von frisch isolierten Monozyten (links) und Makrophagen
nach siebentägiger Kultivierung (rechts). ... 30
Abbildung 3.5: Morphologie der Makrophagen nach siebentägiger Kultivierung auf (A) der
Kontrolle, (B) der Noppenstruktur, (C) der Nanostruktur und (D) der Kontrolle
nach LPS-Stimulierung für 24 Stunden. ... 31
Abbildung 3.6: Expression der funktionassozierten Oberflächenmarker CD163 und 27E10.32
Abbildung 3.7: Cytokin-, Wachstumsfaktor- und Chemokin-Freisetzung 35
Abbildung 3.8: Vergleich der 27E10-Oberflächenexpression von primären Makrophagen und
THP-1-Zellen. ... 40
Abbildung 3.9: dot plots und Histogramme der DsRed-Expression 42
Abbildung 3.10: Durchflusszytometrische Analyse der DsRed-Expression nach PMA- bzw.
PMA/LPS-Stimulation ... 43
.. 44
Abbildung 3.12: Lichtmikroskopische (A) und fluoreszenzmikroskopische (B, C) Aufnahmen
von Klon6 im Vergleich zu nicht-transfizierten THP-1-Zellen 45
Abbildung 3.13: dot plots und Histogramme für pDsRedxS100A8 und pDsRedxS100A8k
nach der Sortierung ... 47
Abbildung 4.1: Tensegrity-Modell der Zelle (aus: (Dalby, 2005) 56
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Antibiotika</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>CCL</td>
<td>CC-Chemokin-Ligand</td>
</tr>
<tr>
<td>CCR</td>
<td>CC-Chemokin-Rezeptor</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>cDNA</td>
<td>Komplementäre DNA</td>
</tr>
<tr>
<td>CXCL</td>
<td>CXC-Chemokin-Ligand</td>
</tr>
<tr>
<td>CXCR</td>
<td>CXC-Chemokin-Rezeptor</td>
</tr>
<tr>
<td>CSF</td>
<td>colony stimulating factor</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleotidtriphosphat</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence activated cell sorter</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung</td>
</tr>
<tr>
<td>G-CSF</td>
<td>granulocyte colony-stimulating factor</td>
</tr>
<tr>
<td>GF</td>
<td>growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MRP</td>
<td>MIF-related protein</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>PBMC</td>
<td>peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet-derived growth factor</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PMA</td>
<td>12-O-Tetradecanoylphorbol-13-Acetat</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like Rezeptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
1. Einleitung

Da Makrophagen, als phagozytische Zellen der angeborenen Immunität, eine wichtige Rolle bei der Fremdkörperantwort im Organismus spielen, ist ihre Reaktion von entscheidender Bedeutung für die Biokompatibilität eines Implantates. Über die Reaktion von Makrophagen insbesondere menschlichen Ursprungs auf Topographie ist bisher aber wenig bekannt. Gegenstand der vorliegenden Arbeit war es daher, an eigens hergestellten Materialien die inflammatorische Potenz mikro- bis nanostrukturierter Topographien auf primäre humane Makrophagen zu untersuchen.

Weiterhin wurde hier eine transgene Zelllinie erzeugt, mit deren Hilfe inflammatorische Prozesse anhand von Fluoreszenz verfolgt werden können.

1.1 Makrophagen

Makrophagen sind phagozytische Zellen und Bestandteil der angeborenen Immunität. Sie entwickeln sich wie alle Blutzellen aus pluripotenten hämatopoetischen Stammzellen, die im Knochenmark gebildet werden (van Furth *et al.*, 1972). Aus ihnen entstehen zunächst die myeloiden Vorläuferzellen, aus denen dann die Monozyten hervorgehen, die im peripheren Blut zirkulieren. Monozyten bilden zusammen mit den Lymphozyten die peripheren mononukleären Blutzellen (*peripheral blood mononuclear cells*, PBMCs). Nachdem die Monozyten aus dem Blut ins Gewebe eingewandert sind, differenzieren sie zu reifen Gewebsmakrophagen (Abb. 1.1). Makrophagen erfüllen verschiedene Funktionen im Körper und sind vor allem an der unspezifischen Immunabwehr beteiligt, indem sie Pathogene,
körperfremdes Material und geschädigte körpereigene Zellen phagozytieren und lysieren. Dieser Vorgang veranlaßt die Makrophagen, Cytokine (siehe 1.2) zu sezernieren, die weitere inflammatorische Zellen aktivieren, zur Migration ins betroffene Gewebe anregen und so zu der Enstehung einer Entzündung führen. Weiterhin spielen Makrophagen auch eine wichtige Rolle bei der sich anschließenden Wundheilung (Diegelmann et al., 1981). Als Antikörper-präsentierende Zellen (APCs) bilden sie außerdem das Bindeglied zwischen angeborener und adaptiver Immunität (Janeway et al., 2002).

Abbildung 1.1: Überblick über die Differenzierung von Makrophagen.

1.1.1 Heterogenität: klassisch und alternativ aktivierter Makrophage

aktivierte Makrophagen vereint (Mantovani et al., 2004; Stout et al., 2004; Mantovani et al., 2007).

Der klassische Weg der Makrophagenaktivierung beginnt mit der Stimulierung durch IFN-γ (Dalton et al., 1993), gefolgt von einem mikrobiellen Reiz wie z.B. Lipopolysaccharid (LPS) und resultiert in der Entstehung des M1-Subtyps (Mosser, 2003). M1-Zellen sind charakterisiert durch die Freisetzungs von proinflammatorischen Mediatoren (z.B. IL-1, IL-12, TNF-α, CXCL10, CCL2; siehe 1.2) und der Expression von Komplementrezeptoren. Der Arginin-Metabolismus in diesen Zellen führt zu der Produktion von Stickstoffmonoxid und reaktiven Sauerstoffspezies, die der direkten Abtötung von Pathogenen dienen (Mantovani et al., 2004). Ein typischer Oberflächenmarker dieser klassisch aktivierten M1-Makrophagen ist 27E10 [(Zwadlo et al., 1986); siehe 1.1.2].

Stein et al. zeigten, dass IL-4 einen Makrophagen-Phänotyp induziert, der deutliche Unterschiede zu dem klassisch aktivierten Makrophagen besitzt und schlugen dafür den Begriff alternative Aktivierung vor (Stein et al., 1992). Die Differenzierung in diese M2-Makrophagen wird durch verschiedene Stimuli vermittelt. Sowohl die Stimulierung mit IL-4 oder IL-13 als auch mit IL-10 oder Glucocorticoiden induziert den alternativen Aktivierungs weg (Mantovani et al., 2004). Ein gemeinsames Merkmal, das diese Subtypen vom M1-Subtypen unterscheidet, ist die Produktion von anti-inflammatorischen Cytokinen wie IL-10, IL-1 Rezeptor-Antagonist (IL-1RN) und dem Chemokin CCL18 (siehe 1.2), während proinflammatorische Cytokine nicht oder nur in sehr geringen Mengen freigesetzt werden (Mantovani et al., 2004). M2-Makrophagen exprimieren den Mannose-Rezeptor sowie den Scavenger-Rezeptor CD163 (siehe 1.1.2) auf ihrer Oberfläche (Stein et al., 1992; Hogger et al., 1998). Der Arginin-Metabolismus dieser Zellen führt zu der Produktion von Polyamin- und Collagen-Vorläufern, was die Geweberegeneration fördert (Mosser, 2003).

1.1.2 Die funktionsassoziierten Oberflächenmarker 27E10 und CD163

dadurch nur wenig gesteigert wird (Zwadlo et al., 1986). In vivo-Untersuchungen zeigten, dass Monozyten/Makrophagen in akut-entzündlichem Gewebe das Antigen von 27E10 exprimieren, während es in gesundem Gewebe oder in chronischen Entzündungen vorwiegend nicht gebildet wird (Zwadlo et al., 1986). Weiterhin exprimieren isolierte 27E10+-Monozyten spontan große Mengen der proinflammatorischen Cytokine IL-1 und TNF-α (Bhardwaj et al., 1992). 27E10 stellt daher auch einen Marker für aktivierte, proinflammatorische Monozyten/Makrophagen dar.

Das Antigen von 27E10 war zunächst nicht bekannt. Odink et al. isolierten mit Hilfe eines Antikörpers gegen den migration inhibitory factor (MIF) aus einer PBMC-Kultur zwei Proteine mit einer relativen Molekülmasse von 8 000 bzw. 14 000 und bezeichneten sie als MIF-related proteins MRP8 bzw. MRP14. Diese Proteine wurden als Calcium-bindende Proteine identifiziert, die in chronischen Entzündungen von Monozyten/Makrophagen exprimiert werden. MRP14 wurde zusätzlich auch in akut-enzündlichem Gewebe gefunden (Odink et al., 1987). Zwadlo et al. untersuchten die Kinetik der MRP8- und MRP14-Expression auf Monozyten/Makrophagen und konnten zeigen, dass sie der transienten Expressionskinetik des phänotypischen Markers 27E10 entsprach (Zwadlo et al., 1988). Den endgültigen Beweis dafür, dass das Epitop von 27E10 das Heterodimer aus MRP8 und MRP14 ist, lieferten Bhardwaj et al. (Bhardwaj et al., 1992). MRP8 und MRP14 besitzen jeweils zwei Calcium-bindende EF-hands, was sie der Familie der S100-Proteine zuschreibt, so dass die aktuelle Nomenklatur dieser Proteine S100A8 (für MRP8) bzw. S100A9 (für MRP14) ist (Kligman et al., 1988; Schafer et al., 1995).

Mahnke et al. zeigten, dass das Heterodimer S100A8/S100A9 in der Adhärenz von Monozyten an die ECM involviert ist, da die Bindung dieser Zellen an Kollagen und Fibronectin durch den 27E10-Antikörper inhibiert werde konnte. Zusätzlich induzierten diese ECM-Proteine die Oberflächenexpression und die Co-Lokalisierung des Heterodimers mit dem Zytoskelett (Mahnke et al., 1995). Eine neuere Studie zeigte, dass dieses Heterodimer die Polymerisierung der Mikrotubuli in der Zelle fördert und so eine wichtige Rolle bei der Migration von Monozyten/Makrophagen spielt (Vogl et al., 2004). S100A8-defiziente knockout Mäuse besitzen einen letalen Phänotyp, vermutlich aufgrund eines Defektes in der Zellmigration (Passey et al., 1999). Weiterhin stellen die beiden Proteine S100A8 und S100A9 endogene Liganden des Toll-like Receptors (TLR)-4 dar und fördern so die Letalität während eines septischen Schocks (Vogl et al., 2007).

auf und werden deshalb mit der Wundheilung assoziiert (Zwadlo et al., 1987; Topoll et al., 1989). Zusätzlich konnten Hamann et al. zeigen, dass RM3/1+-Makrophagen einen anti-inflammatorischen Faktor sezernierten, der im Mausmodell ein 5-Hydroxytryptamin (HT)-induziertes Ödem inhibierte (Hamann et al., 1995).

Das Antigen von RM3/1 ist CD163, ein group B cysteine-rich scavenger Rezeptor, der ausschließlich von Monozyten/Makrophagen exprimiert wird (Hogger et al., 1998). Die biologische Funktion von CD163 besteht in der Endozytose von Hämoglobin/Haptoglobin-Komplexen, die bei der intravaskulären Hämolyse gebildet werden. Durch das Entfernen des Hämoglobins aus dem Blut schützt CD163 das Gewebe vor oxidativer Schädigung (Madsen et al., 2001; Philippidis et al., 2004).

1.2 Cytokine und Chemokine

Eine wichtige Gruppe der Polypeptid-Hormone sind die Cytokine. Cytokine sind eine strukturell heterogene Gruppe von kleinen Proteinen (ca. 25 kDa), die nach Stimulierung von zahlreichen Zellen des Organismus de novo synthetisiert und sezerniert werden. Sie binden an hochspezifische Rezeptoren und lösen sowohl autokrin als auch parakrin verschiedenste Reaktionen aus (Cavaillon, 1994). Beispiele für proinflammatorische Cytokine sind IL-1, IL-6, IL-10 und TNF-α. IL-4, IL-10, IL-13 und IL-1RN sind dagegen Beispiele für anti-inflammatorische Cytokine.

Makrophagen stellen eine bedeutende Quellen von Cytokinen dar, wobei deren de novo-Synthese und Sekretion innerhalb von Stunden stattfindet. Einige Cytokine regen dabei Makrophagen zur Freisetzung von weiteren Cytokinen an, während andere die Produktion...
inhibieren. So spielen sie eine wichtige Rolle bei der Regulation von Immunität und Inflammation (Cavaillon, 1994).

Verschiedene Stimuli induzieren die Freisetzung von Cytokinen durch Makrophagen wie immunologische Stimuli, die Phagozytose von Partikeln oder die Bindung von Mikroorganismen bzw. Teilen von ihnen an spezifische Rezeptoren. Ein Beispiel für Letzteres ist die Bindung von LPS, einem Bestandteil der Zellmembran von gram-negativen Bakterien, an den Komplex aus CD14 und TLR-4, die in der Produktion von proinflammatorischen Cytokinen (IL-1, TNF-α und IL-6) resultiert (Wright et al., 1990). Andere Faktoren wie Hitzeschock-Proteine (Fouqueray et al., 1992) oder Glucocorticoide (Lew et al., 1988) regulieren die Produktion von Cytokinen dagegen herunter. Auch antiinflammatorische Cytokine wie IL-4, IL-10, IL-13 und transforming growth factor (TGF)-β reduzieren die Cytokin-Sekretion von stimulierten Makrophagen (Weiss et al., 1989; de Waal Malefyt et al., 1991; Bogdan et al., 1992; de Waal Malefyt et al., 1993). Gleichzeitig haben sie die Fähigkeit, Makrophagen zur Produktion des anti-inflammatorischen Mediators IL-1RN anzuregen. IL-1RN konkurriert mit IL-1 auf Rezeptorebene und limitiert so die Induktion durch IL-1.

Die Cytokinfreisetzung von Makrophagen gibt daher Hinweise auf den Aktivierungszustand der Zellen.

1.3 Biomaterialien und Biokompatibilität

Für das tissue engineering werden verschiedenste Materialien verwendet, um den Zellen in Kultur ein dreidimensionales, poröses Trägerkonstrukt zu bieten, in das die Zellen einwachsen können, um den in vivo-Bedingungen möglichst nahe zu kommen.

Allen Biomaterialien ist gemein, dass sie neben geeigneter Stabilität und Flexibilität eine angemessene Verträglichkeit gegenüber dem biologischen System besitzen sollten. Diese Eigenschaft beschreibt der Begriff bioinert. Darunter versteht man, dass ein Material auf das
Einleitung

Eine andere Möglichkeit stellt die Strukturierung der Materialoberfläche mit bestimmten Topographien dar, die dann über die so genannte topographische Kontrolle (siehe 1.5) Zellen zu einer gewünschten Reaktion anregen.

Je nach Implantat werden verschiedenste Materialien verwendet. Aus folgenden drei großen Werkstoffgruppen werden Biomaterialien hergestellt:

i. Metalle
ii. Keramiken
iii. Polymere

1.4 Reaktion von Makrophagen auf Implantate

Ein Implantat stellt *in vivo* einen Fremdkörper dar. Makrophagen als wichtige Zellen der angeborenen Immunität (siehe 1.1) gehören, neben den Granulozyten, zu den ersten Zellen, die auf diesen Fremdkörper reagieren und tragen somit entscheidend zu der Biokompatibilität eines Materials bei. Die Implantation eines Materials führt zunächst zu einer Verletzung und damit zu einer akuten Entzündung, gekennzeichnet durch die Infiltration mit neutrophilen Granulozyten und Monozyten. Letztere differenzieren rasch zu Makrophagen und sind entscheidend an der folgenden Reaktion auf das Implantat beteiligt (Anderson,

1.5 Topographische Kontrolle

Einleitung

1.6 Erzeugung einer transgenen Makrophagen-Zelllinie

Ein vielversprechender Ansatz, um die Regulation eines bestimmten Gens zu untersuchen besteht darin, dieses Gen bzw. den entsprechenden Promotor vor die Gensequenz eines fluoreszierenden Reporterproteins zu klonieren und Zellen mit diesem Konstrukt zu transzfigieren. Wird der endogene Promotor dieses Gens in den Zellen dann durch Stimulation induziert, wird das Reporterprotein exprimiert und die transzfigierten Zellen produzieren fluoreszierende Proteine. So läßt sich die Expression des Gens direkt mittels Fluoreszenz verfolgen.

Einleitung

Dabei müssen die Zellen für die Untersuchung der 27E10-Expression nicht Antikörper-markiert und fixiert werden, sondern können während der Messung der Fluoreszenz in Kultur bleiben.

Werden beide Gene des Heterodimers S100A8/S100A9 vor verschiedenen fluoreszierende Reporterproteine kloniert und Zellen damit co-transfiziert, kann anhand der unterschiedlichen Fluoreszenz zusätzlich untersucht werden, wie diese Proteine in der Zelle miteinander interagieren.

1.6.1 Konstrukte und Plasmide

Lagasse und Clerc klonierten die humanen Gene für die S100A8- und A100A9-Proteine, einschließlich der 5'-flankierenden regulatorischen Sequenzen. Beide Gene bestehen aus jeweils 3 Exons, wobei das erste Exon untranslated ist. Die Länge der Exons beträgt 33, 164 und 211 Basenpaare (bp; S100A8) bzw. 28, 165 und 380 bp (S100A9). Die Promotorregionen enthalten Consensus-Sequenzen für die TATA- und die CAAT-Box. Weiterhin besitzen sie eine 11-bp-Homologie-Sequenz, die für die gewebsspezifische Expression dieser Gene verantwortlich sein könnte. Homologie-Vergleiche der beiden Proteine zeigten, dass sie der Familie der S100-Protein-Superfamilie angehören (Lagasse et al., 1988).

1.6.2 THP-1-Zelllinie

Da humane Monozyten nicht mehr proliferieren, können diese Zellen nicht für die Herstellung einer transgenen Zelllinie verwendet werden. Eine geeignete Zelllinie für die stabile Transfektion mit den unter 1.6.1 beschriebenen Konstrukten ist die humane monozytäre Zelllinie THP-1, die aus dem Blut eines Patienten mit akuter monozytärer Leukämie etabliert wurde. Der monozytäre Charakter dieser Zelllinie wurde anhand von Esterase-Aktivität, der Produktion von Lysozyemen und der Fähigkeit zur Phagozytose von Latex-Partikeln...

Kohro et al. zeigten jedoch, dass PMA-stimulierte THP-1-Zelle zwar zu einem gewissen Grad allgemeine Charakteristika mit primären humanen Makrophagen teilen, die Genexpressionsprofile zwischen beiden aber sehr unterschiedlich sind (Bombara et al., 1992; Kohro et al., 2004). Abbildung 1.3 zeigt, dass auch die Morphologie von PMA-stimulierten THP-1-Zellen deutliche Unterschiede zu der Morphologie von primären Makrophagen aufweist.

Abbildung 1.3: Vergleich der Morphologie von primären humanen Makrophagen (links) und PMA-stimulierten THP-1-Zellen (rechts) nach viertägiger Kultivierung.
(Paul et al., unveröffentlicht)

1.7 Ziele der Arbeit

Ein weiteres Ziel dieser Arbeit war die stabile Transfektion der monozytären Zelllinie THP-1 mit Konstrukten aus den Genen S100A8 bzw. S100A9 und den Reportergenen DsRed bzw. AcGFP (pDsRedxS100A8 bzw. pAcGFP1xS100A9). Diese Zellen sollen dazu dienen, die Expression des 27E10-Epitops aus den Proteinen S100A8 und S100A9 anhand von Fluoreszenz zu verfolgen, um beurteilen zu können, in welchen Makrophagen-Subtypen die Zellen differenzieren.
2. Material und Methoden

2.1 Herstellung und Charakterisierung der PVDF-Oberflächen

Die Herstellung und Charakterisierung der Materialoberflächen erfolgte in Kooperation mit dem Deutschen Wollforschungsinstitut an der RWTH Aachen und dem Lehrstuhl für Textilchemie und Makromolekulare Chemie der RWTH Aachen.

2.1.1 Material

2.1.2 Spincoating der PVDF-Schicht

Die PVDF-Pellets wurden (0,56%, m/v) in Tetrahydrofuran/Dimethylformamid (THF/DMF, 3:1, v/v)-Lösung bei 80°C für 2 Stunden unter Stickstoff-Atmosphäre gelöst. Anschließend wurde die Lösung durch einen 0,2 μm-Filter (Whatman, Deutschland) filtriert. Das spincoating erfolgte mit einem Spin Coater (Convac 1001 S, Deutschland) bei 4500 Umdrehungen pro Minute (RPM) für 3 Minuten mit 12 Tropfen der PVDF-Lösung. Danach wurden die Proben für 2 Stunden bei 160°C und anschließend für 1 Stunde bei 195°C getempert. Für das spincoating der nanostrukturierten Oberfläche wurden vor dem spincoating-Prozess Aluminiumoxid-Nanopartikel in die PVDF-Lösung gegeben.

2.1.3 Laserstrukturierung der PVDF-Proben

Die Laserstrukturierung der PVDF-Oberflächen erfolgte beim Fraunhofer Institut für Lasertechnik (ILT), Aachen, als Auftragsarbeit. Verwendet wurde ein ArF-Excimerlaser (λ = 193 nm) mit einer Energiedichte von 1,08 J/cm² mit einer Spannung von 20,7 kV. Die Pulskraft betrug 100 Hz und 5 bis 10 Pulse wurden pro Oberflächeneinheit verwendet. Mit Hilfe einer Chrom-Quarz-Maske wurde dabei eine Noppenstrukturierung erzielt (siehe 3.1).
2.1.4 Reinigung der laserstrukturierten PVDF-Proben

2.1.5 PVDF-Schmelzpressfolie

2.1.6 Physikalische und chemische Charakterisierung der Materialoberflächen

Zur Analyse der Oberflächenstruktur wurde Weißlichtinterferometrie (WIM) mit dem WYKO NT 2000 (Veeco Metrology Group, USA) durchgeführt. Die Oberflächen Chemie wurde mit Hilfe der Photoelektronenspektroskopie (XPS) mit dem X-Probe 206™ Spektrometer (Surface Science Instruments, USA) analysiert. Der Kontaktwinkel der Oberflächen wurde mittels der captive bubble-Methode ermittelt.

2.2 Isolierung von primären humanen Monozyten

80 ml heparinisierter (5 Einheiten Heparin-Natrium/ml, ratiopharm GmbH, Deutschland) Vollblut von gesunden, freiwilligen Spendern* wurde 1:3 mit phosphate buffered saline (PBS) verdünnt. Je 30 ml des verdünnten Blutes wurden vorsichtig auf 20 ml Ficoll-Paque™ Plus (GE Healthcare Bio-Sciences AB, Schweden) in Zentrifugenröhrchen (BD Biosciences, Belgien) geschichtet und bei 400g, Raumtemperatur und ohne Bremse für 40 Minuten zentrifugiert (Megafuge 1.0R, Heraeus Instruments GmbH, Deutschland). Dabei bildete sich
zwischen der unteren Ficollsicht und der oberen Schicht aus Serum eine Interphase, die die peripheren mononukleären Blutzellen (PBMCs) enthielt. Diese Interphase wurde in ein neues Zentrifugenröhrchen überführt und drei- bis viermal mit PBS gewaschen. Um die Monozyten von den restlichen PBMCs zu trennen folgte eine Negativ-Isolierung mit den Dynabeads® M-450 CD2 und M-450 CD19 (Dynal Biotech ASA, Norwegen). Pro 100x10^6 PBMCs wurden 250 μl CD2- und 100 μl CD19-Beads in 5 mM EDTA/0,1 % BSA/PBS gemischt und mit den Zellen 35 Minuten auf Eis geschüttelt. Die nun an den Beads gebundenen T- und B-Lymphocyten wurden mit Hilfe eines Magnets entfernt, so dass sich im Überstand nur noch die Monozyten befanden.

Die so gewonnen Monozyten wurden nach Trypanblau-Färbung (Sigma-Aldrich, Deutschland) in einer Neubauer-Zählkammer (BRAND GmbH & Co KG, Deutschland) gezählt und auf ihre Reinheit überprüft (siehe 2.4).

*Die Genehmigung der lokalen Ethikkommission liegt vor.

2.3 Herstellung von autologem Serum

Zusätzlich zu den 80 ml wurden den Spendern weitere 10 ml Blut zur Herstellung von autologem Serum entnommen. Das Blut wurde für 1 Stunde bei 37°C inkubiert und anschließend bei 1560g und Raumtemperatur für 10 Minuten zentrifugiert (Megafuge 1.0R, Heraeus Instruments GmbH, Deutschland). Der Überstand wurde in ein neues Zentrifugengyrorhüroch überführt und unter gleichen Bedingungen erneut zentrifugiert. Nach einstündiger Hitzeinaktivierung im 57°C heißen Wasserbad wurde erneut zentrifugiert. Das so erhaltene Serum wurde sterilfiltriert (0,2 μm-Syringe Filter, PALL GmbH Life Sciences, Deutschland) und autolog zu dem Kulturmedium der Monozyten gegeben (siehe 2.5).

2.4 Herstellung von Cytospinpräparaten

2.5 Kultivierung der Monozyten

Die Kultivierung der Zellen erfolgte in RPMI1640-Medium mit L-Glutamin (Cambrex Bio Sciences, Belgien) supplementiert mit 5 % autologem Serum (siehe 2.3) und 100 units/ml Penicillin/Streptomycin-Lösung (PAA Laboratories GmbH, Österreich). Die Monozyten wurden auf die verschiedenen PVDF-Oberflächen in 24-well-Platten (BD Biosciences, Belgien) in einer Zelldichte von 1x10^6 Zellen/ml ausgesät. In einigen Experimenten wurde ein Aliquot der Zellen auf der Kontrolle für 24 Stunden mit LPS (1 μg/ml; Sigma-Aldrich, Deutschland) stimuliert. Nach einer Kulturdauer von sieben Tagen in einem Inkubator (Heraeus Instruments GmbH, Deutschland) bei 37°C mit 5 % CO2 (v/v)-Atmosphäre wurden die Zellen bzw. deren Überstand in den verschiedenen Experimenten untersucht.

2.6 Ernten der differenzierten Makrophagen

Nach siebentägiger Kultivierung auf den verschiedenen PVDF-Oberflächen wurden die differenzierten Makrophagen für die Transmissionselektronenmikroskopie und die Durchflusszytometrie geerntet. Dazu wurden die Zellen 45 Minuten auf Eis inkubiert, vorsichtig mit einem Zellschaber abgelöst und bei 400g für 3 Minuten bei 4°C (Biofuge fresco, Heraeus Instruments GmbH, Deutschland) zentrifugiert.

2.7 Licht- und fluoreszenzmikroskopische Analyse

2.8 Durchflusszytometrie

Die geernteten Makrophagen (siehe 2.6) wurden in 1 ml kaltem 1 % BSA/PBS resuspendiert, für 5 Minuten auf Eis inkubiert und anschließend abzentrifugiert. Das Zellpellet wurde in 100 μl der entsprechenden Antikörper-Lösung (1:20; siehe unten) suspendiert und 45 Minuten bei 4°C im Dunkeln inkubiert. Nach zweimaligem Waschen mit PBS wurden die Zellen in einprozentigem Paraformaldehyd fixiert. Unmittelbar vor der FACS-Messung wurden 300 μl PBS zu den Zellen gegeben. Die FACS-Analyse erfolgte mit einem
FACSCalibur und der BD CellQuest™ Pro software, Version 5.2.1 (beides BD Biosciences, Belgien).

Tabelle 2.1: Verwendete Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Klon</th>
<th>Markierung</th>
<th>Konzentration</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-human CD163</td>
<td>5C6-FAT</td>
<td>FITC</td>
<td></td>
<td>BMA Biomedicals AG, Schweiz</td>
</tr>
<tr>
<td>anti-human MRP8/14</td>
<td>27E10</td>
<td>FITC</td>
<td>1:20</td>
<td>Immunotools GmbH, Deutschland</td>
</tr>
<tr>
<td>anti-human HLA-DR</td>
<td>HL-39</td>
<td>PE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9 Messung inflammatorischer Mediatoren im Kulturüberstand

2.10 RNA-Isolierung und RT-PCR

2.11 Genexpressionsanalyse mittels DNA microarray

Die Genexpressionsanalyse wurde mittels des Human Genome U133 A 2.0 arrays von der Core-Facility des IZKF Biomat, Universitätsklinikum der RWTH Aachen, als Auftragsarbeit durchgeführt. Die Genexpression wurde als hoch bzw. herunter reguliert betrachtet, wenn der Log2-Wert zwischen der Kontrolle und der Probe größer 1,5 (≥ dreifache Zunahme) bzw. kleiner 1,5 (≥ dreifache Abnahme) war.
2.12 Statistische Auswertung

One-way ANOVA mit Bonferroni’s post test wurde mit Hilfe der GraphPad Prism software Version 4.0c für Macintosh (GraphPad Software, USA) durchgeführt. Bei p < 0,05 wurden die Unterschiede als statistisch signifikant betrachtet.

2.13 Kultivierung von THP-1-Zellen

Die THP-1-Zellen wurden bei DSMZ, Deutschland, erworben. Ihre Kultivierung erfolgte in RPMI 1640-Medium mit L-Glutamin (Cambrex Bio Sciences, Belgien) mit 100 units/ml Penicillin/Streptomycin-Lösung (PAA Laboratories GmbH, Österreich) und 10 % fetal calf serum (FCS, Sigma-Aldrich, Deutschland) bei 37°C und 5% CO2 (v/v)-Atmosphäre. Alle zwei bis drei Tage wurden die Zellen 1:3 passagiert. Für die Stimulation der Zellen wurden 10 ng/ml PMA (Sigma-Aldrich, Deutschland) eingesetzt.

2.13.1 Einfrieren von THP-1-Zellen

Die THP-1-Zellen wurden in 70 % Medium, 20 % FCS und 10 % Dimethylsulfoxid (Sigma- Aldrich, Deutschland) in einer Dichte von 5x10⁶ Zellen eingefroren und in flüssigem Stickstoff gelagert.

2.13.2 Dosis-Wirkungsabhängigkeit der Antibiotika für die Selektion positiver Klone

Die verwendeten Plasmide enthalten Gene, die die Resistenz gegen die Antibiotika (AB) Kanamycin/Neomycin (G418; pDsRed-Monomer-N1 vector) bzw. Hygromycin (pAcGFP1-Hyg-N1 vector) vermitteln. Um die geeignete Konzentration der AB zu ermitteln, wurde zunächst die Dosis-Wirkungsabhängigkeit untersucht. Dazu wurden die THP-1-Zellen über die Dauer von 14 Tagen mit Konzentrationen von 100 bis 800 \(\mu \)g/ml der AB inkubiert. Die Konzentration des entsprechenden AB, bei der keine Zelle überlebte, wurde als Arbeitskonzentration eingesetzt.

Tabelle 2.2: Arbeitskonzentration der Antibiotika zur Selektion positiver Klone

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Konzentration</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>G418</td>
<td>750 (\mu)g/ml</td>
<td>Sigma-Aldrich, Deutschland</td>
</tr>
<tr>
<td>Hygromycin B</td>
<td>400 (\mu)g/ml</td>
<td>AppliChem GmbH, Deutschland</td>
</tr>
</tbody>
</table>
2.14 Isolation von genomischer DNA

Die genomische DNA wurde mit Hilfe des UltraClean™ DNA BloodSpin-Kits (MoBio Laboratories, Inc., USA) entsprechend des Herstellerprotokolls aus THP-1-Zellen isoliert.

2.15 Polymerase-Kettenreaktion (PCR)

Die PCR wurde verwendet, um

- bestimmte DNA-Fragmente für Klonierungen in ausreichender Menge zu erhalten und mit entsprechenden Restriktionsschnittstellen zu versehen
- Transformanten auf ein bestimmtes Gen zu testen (Kolonie-PCR).

Verwendet wurde das FastStart High Fidelity PCR System (Roche Applied Science, Deutschland). Ein PCR-Ansatz setzte sich wie folgt zusammen:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>x μl</td>
<td></td>
</tr>
<tr>
<td>Primer (forward)</td>
<td>100 nM</td>
<td></td>
</tr>
<tr>
<td>Primer (reverse)</td>
<td>100 nM</td>
<td></td>
</tr>
<tr>
<td>Reaktionspuffer</td>
<td>1 x</td>
<td></td>
</tr>
<tr>
<td>dNTP-Mix</td>
<td>200 μM</td>
<td></td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>1-3 units</td>
<td></td>
</tr>
</tbody>
</table>

Die Primer wurden bei MWG, Deutschland, erworben.

Tabelle 2.3: Primersequenzen

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz (5’→3’)</th>
<th>Restriktions-schnittstelle</th>
<th>Tm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S100A8/Pro F</td>
<td>ACATGTCTTCCACCTTTTGGGTCTTG</td>
<td>PscI</td>
<td>60</td>
</tr>
<tr>
<td>S100A8/Pro R</td>
<td>GCTAGCTGGAGGGCTGAGGAGCAG</td>
<td>NheI</td>
<td>60</td>
</tr>
<tr>
<td>S100A8/E1-3 F</td>
<td>GCTAGCATGTCTCTTTGTCACTGTTC</td>
<td>NheI</td>
<td>64</td>
</tr>
<tr>
<td>S100A8/E1-3 R</td>
<td>GAGCTCTTTGTGCTTTTCTTCATGG</td>
<td>Sacl</td>
<td>64</td>
</tr>
<tr>
<td>S100A9/Pro F</td>
<td>ACATGTACATGTGATATCAGCTGTGAG</td>
<td>PciI</td>
<td>60</td>
</tr>
<tr>
<td>S100A9/Pro R</td>
<td>GCTAGCTGCCAGAGCTGTGAGC</td>
<td>NheI</td>
<td>60</td>
</tr>
<tr>
<td>S100A9/E1-3 F</td>
<td>GCTAGCAACACTCTGTGTGGCTC</td>
<td>NheI</td>
<td>54</td>
</tr>
<tr>
<td>S100A9/E1-3 R</td>
<td>AAGCTTGGGGGTGCCCTCCCGAG</td>
<td>HindIII</td>
<td>66</td>
</tr>
</tbody>
</table>
Das Thermoprofil einer PCR sah folgendermaßen aus:

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>3 Minuten</td>
</tr>
<tr>
<td>95°C</td>
<td>30 Sekunden</td>
</tr>
<tr>
<td>Tm¹</td>
<td>45 Sekunden</td>
</tr>
<tr>
<td>72°C</td>
<td>x² Minuten</td>
</tr>
<tr>
<td>72°C</td>
<td>7 Minuten</td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

¹: Annealing-Temperatur war abhängig von verwendeten Primern
²: Extensionszeit war abhängig von zu amplifizierendem template

2.16 Agarose-Gelelektrophorese

Zur Herstellung der Agarosegele wurden 0.7-1.2 % (w/v) Agarose (Sigma-Aldrich, Deutschland) in TAE-Puffer gelöst. Bevor die Proben auf das Gel aufgetragen wurden, mit 3 μl Loading Buffer (Fermentas GmbH, Deutschland) versetzt. Zur Sichtbarmachung der DNA-Fragmente wurde dem Gel 0,2 μg/ml Ethidiumbromid (Sigma-Aldrich, Deutschland) zugegeben, dass durch Anregung mit UV-Licht der Wellenlänge 302 nm fluoresziert. Zur Bestimmung der Fragmentgröße wurde ein definierter Größenstandard (New England Biolabs, Deutschland) mitgeführt.

Tabelle 2.4: Zusammensetzung des TAE-Puffers

<table>
<thead>
<tr>
<th>TAE-Puffer (50x)</th>
<th>Konzentration</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>0,05 M</td>
<td>Sigma-Aldrich, Deutschland</td>
</tr>
<tr>
<td>Tris</td>
<td>2,0 M</td>
<td></td>
</tr>
<tr>
<td>Essigsäure</td>
<td>auf pH 8,0</td>
<td></td>
</tr>
</tbody>
</table>

2.17 Extraktion von DNA-Fragmenten aus Agarosegelen

Das Gel wurde auf einen Transilluminator (Biometra Ti1, Biometra biomedizinische Analytik GmbH, Deutschland) gelegt, unter UV-Licht die gewünschte Bande mit einem Skalpell ausgeschnitten und gewogen. Die Extraktion der DNA aus dieser Bande erfolgte mit dem QIAEX II Gel Extraction Kit (Qiagen GmbH, Deutschland) entsprechend des Herstellerprotokolls. Die DNA wurde in 50 μl A.dest eluiert.
2.18 Restriktion von DNA

Ein Restriktionsansatz setzte sich wie folgt zusammen:

<table>
<thead>
<tr>
<th>Material</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>1 μg</td>
</tr>
<tr>
<td>Restriktionsenzym(e)</td>
<td>(je) 2-5 units</td>
</tr>
<tr>
<td>Restriktionspuffer*</td>
<td>1 x</td>
</tr>
</tbody>
</table>

* vom Hersteller empfohlener Reaktionspuffer

Die Inkubationszeit und –temperatur (i.d.R. 37°C) richtete sich nach den verwendeten Enzymen.

Tabelle 2.5: Verwendete Restriktionsenzyme

<table>
<thead>
<tr>
<th>Restriktionsenzym</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>PscI</td>
<td>Fermentas GmbH, Deutschland</td>
</tr>
<tr>
<td>NheI</td>
<td></td>
</tr>
<tr>
<td>SacI</td>
<td></td>
</tr>
<tr>
<td>HindIII</td>
<td></td>
</tr>
</tbody>
</table>

2.19 Ligation von DNA-Fragmenten

Die DNA-Fragmente wurden zunächst in den pGEM® T easy-Vektor (Promega GmbH, Deutschland) kloniert, in E.coli vervielfältigt (siehe 2.22) und dann in den entsprechenden Vektor (pDsRed-Monomer-N1 vector bzw. pAcGFP1-Hyg-N1 vector; beide BD Biosciences Clontech, Deutschland) kloniert.
Ein Ligationsansatz setzte sich wie folgt zusammen:

- DNA-Fragment \(x^* \mu g \)
- Vektor \(y^* \mu g \)
- Ligationspuffer \(1 \times \)
- T4-DNA-Ligase \(3 \) units

(Promega GmbH, Deutschland)

* Das eingesetzte Verhältnis zwischen Vektor und DNA-Fragment richtete sich sowohl nach der Größe der zu ligierenden DNA-Fragmente als auch danach, ob *blunt* oder *sticky ends* vorlagen.

Die Inkubation erfolgte bei 4°C über Nacht.

2.20 Sequenzierung

Die Sequenzierung der DNA-Fragmente erfolgte im Fraunhofer IME, Aachen, als Auftragsarbeit.

2.21 Herstellung chemisch kompetenter Bakterien (CaCl\(_2\)-Methode)

Zunächst wurden 50 ml LB-Medium mit *E.coli* (Stamm JM108, freundlicherweise zur Verfügung gestellt vom Institut für Biochemie, Universitätsklinikum der RWTH Aachen) angespült und über Nacht bei 37°C geschüttelt (Vorkultur). Mit dieser Vorkultur wurden 500 ml LB-Medium angespült, so dass sich für diese Hauptkultur eine OD\(_{600}\) von ca. 0,02 ergab. Nachdem eine OD\(_{600}\) von ca. 0,3 erreicht wurde, wurden die Zellen bei 4000g für 5 Minuten abzentrifugiert (KR22i, Jonan GmbH, Deutschland) und das Zellpellet in 50 mM CaCl\(_2\)-Lösung suspendiert. Nach 20-minütiger Inkubation auf Eis wurden die Zellen erneut abzentrifugiert und im Transformationspuffer suspendiert. Die so hergestellten chemisch kompetenten Zellen wurden in Aliquots von 400 µl in flüssigem Stickstoff eingefroren und bei -80°C gelagert. Ein Aliquot wurde auf Transformationskompetenz getestet.
Tabelle 2.6: Zusammensetzung des LB-Mediums und des Transformationspuffers

<table>
<thead>
<tr>
<th>LB-Medium</th>
<th>Konzentration</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypton</td>
<td>1 %</td>
<td>AppliChem GmbH, Deutschland</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>0,5 %</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>1 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformationspuffer</th>
<th>Konzentration</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCl₂</td>
<td>50 mM</td>
<td>Sigma-Aldrich, Deutschland</td>
</tr>
<tr>
<td>Glycerin</td>
<td>10 %</td>
<td></td>
</tr>
</tbody>
</table>

2.22 Transformation chemisch kompetenter Bakterien ('Hitzeschock')

100 μl der auf Eis aufgetauten chemisch kompetenten Bakterien wurden mit dem zu transformierenden Plasmid gemischt. Nach 20-minütiger Inkubation auf Eis wurden die Zellen für 45 Sekunden einem Hitzeschock von 42°C (Thermomixer comfort, Eppendorf, Deutschland) ausgesetzt und dann wieder für 2 Minuten auf Eis gehalten. Nach der Zugabe von 600 μl LB-Medium wurden die Zellen 1,5 Stunden bei 37°C geschüttelt. Die transformierten Bakterien wurden auf LB-Agarplatten (LB-Medium + 1,5 % Agar (w/v), Sigma-Aldrich, Deutschland) mit geeignetem Antibiotikum über Nacht bei 37°C selektiert.

2.23 Plasmidisolierung aus Bakterien

2.23.1 Wizard Plus SV Minipreps DNA Purification System

2.23.2 Endotoxin-freie Plasmidisolierung

Da die Plasmide für die Transfektion der THP-1-Zellen Endotoxin-frei sein mussten, wurde hierfür das EndoFree Plasmid Maxi-Kit (Qiagen GmbH, Deutschland) entsprechend des Herstellerprotokolls verwendet.
2.24 Transformation von THP-1-Zellen (*Nucleofection*)

Die Transfektion der THP-1-Zellen mit den entsprechenden DNA-Konstrukten erfolgte mit dem Nucleofector II und dem Cell Line Nucleofector® Kit V (beides amaxa AG, Deutschland) nach einem für THP-1-Zellen optimierten Protokoll: 1x10⁶ Zellen wurden in 100 μl Cell Line Nucleofector Solution V resuspendiert und mit ca. 0,5 μg Plasmid-DNA gemischt. Für die Elektroporation wurde die Probe in eine Küvette (amaxa AG, Deutschland) überführt und in den Küvettenhalter des Nucleofector II gestellt. Die Elektroporation erfolgte mit dem Nucleofector-Programm V-01. Danach wurde die Küvette mit 37°C-warmen Kulturmedium (siehe 2.13) gefüllt und die Zellen wurden in eine 6-well-Platte (BD Biosciences, Belgien) mit vorgelegtem Medium (2,5 ml) überführt. Nach 48 Stunden bei 37°C und 5% (v/v) CO₂-Atmosphäre wurden die Zellen mit entsprechenden Antibiotika selektiert (siehe 2.13.2).

2.25 Selektion positiver Klone (*limited dilution*)

Um einzelne positive Klone zu erhalten, wurde eine *limited dilution* durchgeführt. Dazu wurden die Zellen so in 96-well-Platten ausgesät, dass sich pro well maximal eine Zelle befand. Um gutes Wachstum der Zellen zu gewährleisten, wurde konditioniertes Medium verwendet, das heißt Medium, in dem bereits THP-1-Zellen gewachsen waren. Dem Medium wurden die entsprechenden Konzentrationen an Antibiotika (siehe 2.13.2) zugegeben. Nachdem sich aus den einzelnen Zellen neue Kolonien gebildet hatten, wurden sie mittels Durchflusszytometrie analysiert.

2.26 Cell Sorting

Abbildung 2.1: *dot plots* für die Sortierung von Klon2 und Klon6.

In den *dot plots* ist die Seitwärtsstreuung (SSC) gegen die DsRed-Fluoreszenz aufgetragen. Die dabei erhaltenen zwei Populationen (P2 und P3) wurden anhand dieser Parameter sortiert.
3. **Resultate**

3.1 **Herstellung und Charakterisierung der PVDF-Oberflächen**

Abbildung 3.1 zeigt die weißlichtinterferometrischen und profilometrischen Analysen der verschiedenen strukturierten PVDF-Oberflächen. Das sphärolithische PVDF zeigte eine glatte Oberfläche (Abb. 3.1, A). Die Spitzen innerhalb jedes einzelnen Sphäroliths stellen die Keimbildungszone der Sphärolithe dar. Die mit Laserablation mikrostrukturierte Oberfläche bestand aus 1 μm hohen Noppen mit einem lateralen Abstand von 30 μm (Abb. 3.1, D), während die nanostrukturierte Oberfläche mit eingeschlossenen Aluminiumoxid-Partikeln eine Rauheit unter 100 nm besaß (Abb. 3.1, B). Die gepresste PVDF-Folie wies Rillen mit einer Breite von ca. 500 nm auf (Abb. 3.1, C).

Mit Hilfe der Photoelektronenspektroskopie (XPS) wurde die chemische Zusammensetzung der verschiedenen PVDF-Oberflächen untersucht. Tabelle 3.2 zeigt die Elemente Kohlenstoff (C1s), Sauerstoff (O1s) und Fluor (F1s) in Atomprozent (Atom-%). Im Gegensatz zu unmodifiziertem PVDF-Granulat mit weniger als 0,5 Atom-% Sauerstoff, führten alle Behandlungen des PVDFs zu einer Erhöhung des Sauerstoffgehalts. Während die sphärolithische Kontrolle und die nanostrukturierte Oberfläche einen Anstieg im Sauerstoffgehalt von ca. 1,0 Atom-% zeigten, führte das Pressen und die Laserstrukturierung zu einem Sauerstoffgehalt von 2,4 bzw. 2,7 Atom-%. Abgesehen von diesem geringen Anstieg im Sauerstoffgehalt besaßen alle Strukturen die gleiche Oberflächenchemie (Abb. 3.2). Dabei zeigte sich auch, dass die...
eingebetteten Aluminiumoxid-Partikel der Nanostruktur vollständig von PVDF umschlossen waren. Abbildung 3.2 zeigt exemplarisch die XPS-Spektren von sphärolithischem und mikrostrukturiertem PVDF.

Der Kontaktwinkel der Oberflächen wurde mit Hilfe der *captive bubble*-Methode gemessen. Der Kontaktwinkel einer Oberfläche beschreibt ihre Benetzbarkeit, wobei ein Kontaktwinkel um 90° bedeutet, dass eine Oberfläche hydrophob ist. Die Messung des Kontaktwinkels ergab für die sphärolithische Kontrolle, die Noppen- und die Rillenstruktur einen Kontaktwinkel zwischen 60° und 70°. Die Nanostrukturierung des PVDFs resultierte in einem Anstieg des Kontaktwinkels auf ca. 90°, was auf die Nanotopographie der Oberfläche zurückzuführen ist (Abb. 3.3).

Abbildung 3.1: WIM-Aufnahmen und X-Profilanalyse der (A) Kontrolle, der (B) Nanostruktur, der (C) Rillenstruktur und der (D) Noppenstruktur.

Die Farben entsprechen den Höhen bzw. Tiefen der Strukturen in μm entsprechend der Skala. Die gestrichelte Linie entspricht der profilometrischen Analyse.
Abbildung 3.2: XPS-Spektren der Kontrolle (links) und der Noppenstruktur (rechts).

Tabelle 3.1: Chemische Zusammensetzung der PVDF-Oberflächen ermittelt mit XPS-Analyse in Atom-% (vergleiche Abb. 3.2)

<table>
<thead>
<tr>
<th></th>
<th>Kohlenstoff</th>
<th>Sauerstoff</th>
<th>Fluor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>46,4</td>
<td>1,5</td>
<td>52,1</td>
</tr>
<tr>
<td>Nanostruktur</td>
<td>46,2</td>
<td>1,4</td>
<td>52,2</td>
</tr>
<tr>
<td>Noppenstruktur</td>
<td>48,5</td>
<td>2,7</td>
<td>48,8</td>
</tr>
<tr>
<td>Rillenstruktur</td>
<td>47,8</td>
<td>2,4</td>
<td>49,8</td>
</tr>
</tbody>
</table>

Abbildung 3.3: Kontaktwinkel der verschieden strukturierten PVDF-Oberflächen.
3.2 Einfluss der Topographie auf primäre humane Makrophagen

3.2.1 Reinheit der isolierten Monozyten

Abbildung 3.4: Cytospin-Präparate von frisch isolierten Monozyten (links) und Makrophagen nach siebentägiger Kultivierung (rechts).
Die Präparate wurden mit dem Diff-Quik®-Kit gefärbt (siehe 2.4).

3.2.2 Effekt der Topographie auf die Morphologie

Nach siebentägiger Kultivierung auf den unter 3.1 beschriebenen PVDF-Oberflächen zeigten die Makrophagen deutliche morphologische Unterschiede auf den verschiedenen Strukturen. Die lichtmikroskopischen Aufnahmen in Abbildung 3.5 machen deutlich, dass die Kultivierung der Makrophagen auf der glatten Kontrolle in einer ähnlich amöboiden Form resultierte wie durch die Stimulierung mit LPS. Aufgrund der Dicke und der damit verbundenen Lichtundurchlässigkeit der PVDF-Folie konnte die Morphologie der Makrophagen auf der Rillenstruktur nicht lichtmikroskopisch untersucht werden. Auf der Noppenstruktur entwickelten sich spindelförmige, gestreckte Makrophagen, wohingegen die Zellen auf der nanostrukturierten Topographie eine kugelige Morphologie zeigten.
3.2.3 Effekt der Topographie auf die Expression funktionsassoziierter Oberflächenmarker

Um den Phänotyp, der sich auf den verschiedenen Topographien entwickelte, genauer zu untersuchen, wurden die differenzierten Makrophagen mit FITC-konjugierten monoklonalen Antikörpern gegen die funktionsassozierten Oberflächenmarker für M2-Zellen, CD163, und für M1-Zellen, S100A8/S100A9 (27E10), markiert. Die Expression dieser Marker wurde dann mittels Durchflusszytometrie gemessen.

Wie in Abbildung 3.6 dargestellt, induzierten die Noppen- und die Rillenstruktur sowohl den anti-inflammatorischen Marker CD163 als auch den proinflammtorischen Marker 27E10 im Vergleich zur glatten Kontrolle. Die nanostrukturierte Oberfläche beeinflusste die Expression dieser Marker dagegen nicht.

Die Expression von CD163, S100A8 und S100A9 auf der Noppenstruktur konnten auch mittels DNA microarray auf mRNA-Ebene bestätigt werden (siehe 3.2.4 und Tab. 3.3).

Zusammenfassend deuten diese Daten darauf hin, dass sowohl die Noppen- als auch die Rillenstruktur einen intermediären Phänotypen mit Eigenschaften von M1- und M2-Makrophagen induzierte.
Abbildung 3.6: Expression der funktionassozierten Oberflächenmarker CD163 und 27E10. CD163- und 27E10-Oberflächenexpression der Makrophagen nach siebentägiger Kultivierung auf den verschiedenen Topographien. (A) Dargestellt ist die durchflusszytometrische Messung der CD163-bzw. 27E10-Expression eines repräsentativen Experiments. (B) Balkendiagramme repräsentieren die Mittelwerte + Standardabweichung aus fünf unabhängigen Experimenten in Prozent positiver Zellen (* p < 0,05).

3.2.4 Effekt der Topographie auf die Freisetzung inflammatorischer Mediatoren

Um den Aktivierungszustand der Makrophagen nach siebentägiger Kultivierung auf den unterschiedlichen Topographien zu untersuchen, wurden die Konzentrationen verschiedener inflammatorischer Mediatoren mit Hilfe des Bio-Plex™ Suspension Array System im Kulturüberstand gemessen (siehe 2.9). Als Kontrolle für die Aktivierungspotenz der Makrophagen wurde ein Aliquot der Zellen auf der Kontrolloberfläche für 24 Stunden mit LPS stimuliert. Untersucht wurden die Kulturüberstände aus sieben unabhängigen Experimenten. Mit dem Bio-Plex™ Human 27-Plex Panel lassen sich in einem gegebenen Kulturüberstand die Konzentrationen von 27 inflammatorischen Mediatoren detektieren. Wie erwartet wurden
Mediatoren, die typischerweise von anderen Zellen als Makrophagen produziert werden, nicht oder nur in sehr geringen Mengen detektiert.

Abbildung 3.7 stellt die Konzentrationen der auf den verschiedenen Topographien freigesetzten Cytokine, Wachstumsfaktoren und Chemokine graphisch dar. Die Kultivierung der Makrophagen auf der Nanostruktur führte zu einem ähnlichen Sekretionsmuster wie die Kultivierung auf der Kontrolle. Lediglich der anti-inflammatorische Mediator IL-1RN wurde, wie auf allen Strukturen im Vergleich zur Kontrolle, herunter reguliert. Die Kultivierung auf der Rillenstruktur führte zu einem ähnlichen Ergebnis, wobei hier zusätzlich die proinflammatorischen Cytokine IL-6 und IL-1β in leicht erhöhter Konzentration freigesetzt wurden als auf der Kontrolle und der Nanostruktur.

Im Gegensatz dazu beeinflusste die Noppenstruktur und die Stimulierung mit LPS die Freisetzung einiger Mediatoren deutlich. So wurde die Sekretion der inflammatorischen Cytokine IL-1β, IL-6, TNF-α und IFN-γ durch die Noppenstruktur und durch LPS induziert. Die Induzierung von IL-1β nach LPS-Stimulierung war dabei nicht so deutlich wie durch die Noppenstruktur. Die Sekretion von IL-12 wurde nach LPS-Stimulierung erhöht, während die Noppenstruktur im Vergleich zur Kontrolle kaum Einfluss auf die Freisetzung hatte.

Die Produktion des anti-inflammatorischen Cytokins IL-10 wurde durch die Topographien im Vergleich zur Kontrolle kaum beeinflusst, wohingegen die Zugabe von LPS zu einer deutlichen Induzierung führte. Wie bereits oben ausgeführt führte auch die Noppenstruktur zu einer Abnahme der IL-1RN-Sekretion im Vergleich zur Kontrolle.

Auch die Sekretion von Wachstumsfaktoren (GFs) wurde durch Topographie beeinflusst. Während die Kultivierung auf der Noppenstruktur in einem Anstieg des granulocyte colony-stimulating factor (G-CSF) und des vascular endothelial GF (VEGF) im Makrophagenüberstand resultierte, wurde die Freisetzung des platelet-derived GF (PDGF) deutlich vermindert. Im Gegensatz dazu wurden die Sekretion aller drei GFs durch LPS induziert.

Die Produktion der fünf gemessenen Chemokine, CCL2, CCL3, CCL4, CCL5 und CXCL10, wurde durch LPS deutlich stimuliert. Die Kultivierung der Makrophagen auf der Noppenstruktur induzierte dagegen nur die Sekretion von CCL2, CCL3 und CCL4, während die CCL5-Sekretion im Vergleich zur Kontrolle nicht beeinflusst wurde. Interessanterweise wurde das durch LPS induzierte Chemokin CXCL10 durch die Noppenstruktur deutlich herunter reguliert. Weiterhin wurde noch die Sekretion des Chemokins CXCL8 (IL-8) untersucht. Die Konzentrationen lagen jedoch in allen untersuchten Überständen oberhalb des messbaren Bereiches, so dass sie mit dem Bio-Plex™ array nicht bestimmt werden konnten.
Abbildung 3.7: Cytokin-, Wachstumsfaktor- und Chemokin-Freisetzung.

Nach siebentägiger Kultivierung auf den verschiedenen PVDF-Oberflächen bzw. nach zusätzlicher 24-stündiger LPS-Stimulierung (10 μg/ml) der Makrophagen wurden die Konzentrationen der Mediatoren im Kulturüberstand gemessen. Dargestellt sind die Mittelwerte + Standardabweichung in pg/ml von sieben unabhängigen Experimenten.

Tabelle 3.2: Effekt der Noppenstruktur und der LPS-Stimulierung auf die Proteinsekretion und Genexpression der Makrophagen im Vergleich zur Kontrolle

<table>
<thead>
<tr>
<th>Protein-Sekretion a)</th>
<th>Genexpression Log$_2$ a), b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ng/ml</td>
<td>(Zunahme/Abnahme)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>Noppenstruktur</td>
</tr>
<tr>
<td>Proinflammatorische Cytokine</td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>0,01</td>
</tr>
<tr>
<td>IL-6</td>
<td>0,05</td>
</tr>
<tr>
<td>TNF-α</td>
<td>0,05</td>
</tr>
<tr>
<td>INF-γ</td>
<td>0,03</td>
</tr>
<tr>
<td>Antiinflammatorische Cytokines</td>
<td></td>
</tr>
<tr>
<td>IL-1RN</td>
<td>>150</td>
</tr>
<tr>
<td>IL-10</td>
<td>0,01</td>
</tr>
<tr>
<td>Wachstumsfaktoren</td>
<td></td>
</tr>
<tr>
<td>G-CSF</td>
<td>0,02</td>
</tr>
<tr>
<td>VEGF</td>
<td>0,01</td>
</tr>
<tr>
<td>PDGF</td>
<td>0,23</td>
</tr>
<tr>
<td>Chemokine</td>
<td></td>
</tr>
<tr>
<td>CXCL8</td>
<td>>150</td>
</tr>
<tr>
<td>CCL2</td>
<td>1,01</td>
</tr>
<tr>
<td>CCL3</td>
<td>0,04</td>
</tr>
<tr>
<td>CCL4</td>
<td>0,15</td>
</tr>
<tr>
<td>CCL5</td>
<td>0,03</td>
</tr>
<tr>
<td>CXCL10</td>
<td>2,31</td>
</tr>
</tbody>
</table>

a) Mittelwerte von zwei unabhängigen Experimenten.

b) Die Genexpression wurde als hoch bzw. herunter reguliert betrachtet, wenn der Log$_2$-Wert zwischen der Kontrolle und der Probe größer 1,5 (≥ dreifache Zunahme) bzw. kleiner 1,5 (≥ dreifache Abnahme) war.
Tabelle 3.2 zeigt, dass die Expression der anti-inflammatorischen Cytokine IL-1RN und IL-10 auf Protein- und mRNA-Ebene in Übereinstimmung mit den in Abbildung 3.7 gezeigten Daten ist. Auch die deutliche Induktion von IL-1β durch die Noppenstruktur wird anhand der Tabelle bestätigt. Zusätzlich wird hier auf mRNA-Ebene eine deutlichere Hochregulation durch LPS gezeigt. Die hohe Sekretion von IL-6 auf der Noppenstruktur ließ sich auf mRNA-Ebene nicht mehr nachweisen, was vermutlich auf die kurze Halbwertszeit der mRNA und die hohe Stabilität des Proteins für dieses Cytokin zurückzuführen ist (Kenis et al., 2002). Dieser Unterschied in der Stabilität zwischen mRNA und entsprechendem Protein könnte auch eine Erklärung für die Abweichungen in der Expression von TNF-α, IFN-γ, G-CSF und VEGF auf Protein- und mRNA-Ebene darstellen.

Die in Abbildung 3.7 gezeigte starke Induktion der Chemokine durch LPS stimmt sowohl auf Protein- als auch auf mRNA-Ebene mit den Daten in Tabelle 3.2 überein. Im Gegensatz dazu weichen die Daten für die Chemokin-Expression auf der Noppenstruktur hier zum Teil ab. Während die Induktion von CCL2 in Tabelle 3.2 viel deutlicher ist als in Abbildung 3.7 dargestellt, ist hier die Expression von CCL3 auf der Noppenstruktur weder auf Protein- noch auf mRNA-Ebene zu sehen. Die Sekretion der Proteine CCL4 und CCL5 entspricht den in Abbildung 3.7 dargestellten niedrigen Konzentrationen für diese Chemokine, während sich für CCL5 auf mRNA-Ebene eine deutliche Induktion auf der Noppenstruktur zeigt.

Die Abweichungen der Proteinsekretion zwischen Abbildung 3.7, in der die Daten von sieben Spendern verwertet wurden, und der Tabelle 3.2, in der nur die Daten von 2 Spendern berücksichtigt wurden, läßt sich mit der bereits erwähnten hohen Spendervariabilität in der Cytokin-Produktion erklären. Größtenteils stimmen die Daten aber überein und ließen sich auf mRNA-Ebene bestätigen.

Zusammenfassend zeigen diese Daten, dass die auf der Noppenstruktur kultivierten Makrophagen ein spezifisches Muster an inflammatorischen Mediatoren freisetzten, das sich von dem durch LPS stimulierten Muster unterscheidet. Dabei war die Reaktion der Makrophagen auf der Noppenstruktur überwiegend proinflammatorisch. Im Vergleich zur Kontrolle beeinflussten die Nano- und die Rillenstruktur die Sekretion der gemessenen Mediatoren im Vergleich zur Kontrolle kaum.

3.2.5 Effekt der Topographie auf die Genexpression

Um den Einfluss der Noppenstruktur auf das Genexpressionsprofil der Makrophagen zu untersuchen, wurde eine DNA microarray-Analyse durchgeführt. Nach siebentägiger Kultivierung auf der Noppenstruktur und auf der Kontrolle wurde die RNA der Makrophagen isoliert. Zusätzlich wurde die RNA nach 24-stündiger LPS-Stimulation auf der Kontrolle

Neben der Verifizierung der unter Abschnitt 3.2.4 beschriebenen Proteindaten, identifizierte die Analyse der Genexpression zahlreiche weitere Gene, die durch die Topographie reguliert wurden. Insgesamt wurde die Expression von 360 Genen durch die Noppenstruktur induziert, von denen 180 Gene nicht durch LPS beeinflusst wurden. 580 Gene wurden hingegen herunter reguliert, wobei 50 dieser Gene spezifisch durch die Struktur und nicht durch LPS reguliert wurden. Tabelle 3.3 fasst die Expression ausgewählter Gene zusammen. Dabei sind die Mittelwerte der Log2-Expression von zwei Experimenten im Vergleich zur Kontrolle dargestellt. Die regulierten Gene wurden in vier Gruppen unterteilt: (i) die erste Gruppe beinhaltet Gene, die nur durch die Noppenstruktur reguliert wurden (Tab. 3.3, A). Darunter waren Gene, die für Rezeptoren (CCR3, IL-1 receptor 1, CD209 und Stabilin-1) und Enzyme (Elastase 2, Cathepsin G, Myeloperoxidase und Tryptase α/β) codieren. Wie bereits unter Abschnitt 3.2.3 erwähnt, wurden ebenfalls die Gene für die funktionsassozierten Oberflächenmarker CD163, S100A8 (Tab. 3.3, D) und S100A9 durch die Noppenstruktur hoch reguliert. (ii) die zweite Gruppe enthält Gene für Chemokine (CCL19, CCL20 und CCL7), das Enzym Cyclooxygenase 2 (PTGS2), den tissue inhibitor of metalloproteinase 2 (TIMP2) und den colony stimulating factor-Rezeptor (CSF1R). Diese Gene wurden nur durch LPS reguliert (Tab 3.3, B). (iii) die dritte Gruppe beinhaltet Gene, die gegensätzlich durch die Noppenstruktur und durch LPS reguliert wurden. Darunter sind Gene, die das Glycoprotein Selenoprotein P, Plasma 1 (SEPP1), Transporter (SLCO2B1, TAP1) und das Enzym Hämoxygenase 1 (HMOX1) codieren. (iv) Die Gene in der letzten Gruppe wurden durch die Noppenstruktur und durch LPS gleichermaßen reguliert. Sie beinhaltet Gene für Rezeptoren (IL-7R und CCR3), Chemokine und Wachstumsfaktoren (CCL22, CSF1), die Enzyme Caspase 1 (CASP1), Cyclooxygenase 1 (PTGS1) und Cytochrom P450 und das Gen für Fibronektin 1 (FN1).

Zusammenfassend zeigte die Genexpressionsanalyse, dass die Noppenstruktur sowohl die Expression von M1- als auch von M2-assoziierten Genen induzierte. Weiterhin machen die Daten deutlich, dass sich die Antwort auf der Topographie von der durch LPS stimulierten Antwort unterscheidet.
Tabelle 3.3: Expression ausgewählter Gene, reguliert durch Topographie (A), durch LPS (B), durch beide gegensätzlich (C) oder durch beide gleichsam (D) a)

<table>
<thead>
<tr>
<th>Gen</th>
<th>NCBI Genbezeichnung</th>
<th>Noppenstruktur</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA2</td>
<td>Elastase 2, neutrophil</td>
<td>6,93</td>
<td>0,11</td>
</tr>
<tr>
<td>CTSG</td>
<td>Cathepsin G</td>
<td>4,51</td>
<td>0,13</td>
</tr>
<tr>
<td>MPO</td>
<td>Myeloperoxidase</td>
<td>4,18</td>
<td>-0,02</td>
</tr>
<tr>
<td>STAB1</td>
<td>Stabilin 1</td>
<td>3,51</td>
<td>0,15</td>
</tr>
<tr>
<td>CD209</td>
<td>DC SIGN</td>
<td>3,30</td>
<td>-0,88</td>
</tr>
<tr>
<td>TPSAB1</td>
<td>Tryptase alpha/beta 1</td>
<td>2,86</td>
<td>0,23</td>
</tr>
<tr>
<td>CCR3</td>
<td>Chemokine, CC motif, receptor 3</td>
<td>2,87</td>
<td>0,10</td>
</tr>
<tr>
<td>IL1R1</td>
<td>IL-1 receptor, type I</td>
<td>2,40</td>
<td>0,06</td>
</tr>
<tr>
<td>S100A9</td>
<td>S100 calcium-binding protein A9</td>
<td>1,98</td>
<td>0,60</td>
</tr>
<tr>
<td>CD163</td>
<td>Hemoglobin scavenger receptor</td>
<td>1,89</td>
<td>-0,07</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL19</td>
<td>Macrophage inflammatory protein 3 beta</td>
<td>0,26</td>
<td>9,30</td>
</tr>
<tr>
<td>PTGS2</td>
<td>Prostaglandin-endoperoxide synthase 2, COX 2</td>
<td>0,06</td>
<td>5,32</td>
</tr>
<tr>
<td>CCL20</td>
<td>Macrophage inflammatory protein 3 alpha</td>
<td>-0,04</td>
<td>4,67</td>
</tr>
<tr>
<td>CCL7</td>
<td>Monozyte chemotactic protein 3</td>
<td>0,18</td>
<td>2,44</td>
</tr>
<tr>
<td>TIMP2</td>
<td>Tissue inhibitor of metalloproteinase 2</td>
<td>0,11</td>
<td>-2,06</td>
</tr>
<tr>
<td>CSF1R</td>
<td>Colony stimulating factor 1 receptor, CD115</td>
<td>0,71</td>
<td>-2,72</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPP1</td>
<td>Selenoprotein P, plasma 1</td>
<td>5,51</td>
<td>-1,31</td>
</tr>
<tr>
<td>SLCO2B1</td>
<td>Solute carrier organic anions</td>
<td>2,61</td>
<td>-1,58</td>
</tr>
<tr>
<td>HMOX1</td>
<td>Hemeoxygenase 1</td>
<td>2,10</td>
<td>-1,99</td>
</tr>
<tr>
<td>TAP1</td>
<td>Transporter 1, ATP-binding cassette, MHC 1</td>
<td>-1,46</td>
<td>2,08</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL7R</td>
<td>IL-7 rezeptor, CD127</td>
<td>4,64</td>
<td>6,32</td>
</tr>
<tr>
<td>CASP1</td>
<td>Caspase 1</td>
<td>2,89</td>
<td>6,88</td>
</tr>
<tr>
<td>CCR7</td>
<td>Chemokine, CC motif, receptor 7</td>
<td>2,75</td>
<td>3,39</td>
</tr>
<tr>
<td>S100A8</td>
<td>S100 calcium-binding protein A8</td>
<td>1,75</td>
<td>2,78</td>
</tr>
<tr>
<td>PTGS1</td>
<td>Prostaglandin-endoperoxide synthase 1, COX 1</td>
<td>-1,68</td>
<td>-5,10</td>
</tr>
<tr>
<td>CSF1</td>
<td>Colony stimulating factor 1, M-CSF</td>
<td>-3,23</td>
<td>-3,68</td>
</tr>
<tr>
<td>CCL22</td>
<td>Macrophage-derived chemokine</td>
<td>-4,35</td>
<td>-5,45</td>
</tr>
<tr>
<td>FN1</td>
<td>Fibronectin 1</td>
<td>-6,61</td>
<td>-8,71</td>
</tr>
<tr>
<td>CYP27B1</td>
<td>Cytochrome P450</td>
<td>-4,29</td>
<td>-1,33</td>
</tr>
</tbody>
</table>

a) Dargestellt sind die Mittelwerte (n = 2) der Log$_2$-Expression im Vergleich zur Expression auf der Kontrolle. Die Genexpression wurde als hoch bzw. herunter reguliert betrachtet, wenn der Log$_2$-Wert zwischen der Kontrolle und der Probe größer eins (> zweifache Zunahme) bzw. kleiner eins (> zweifache Abnahme) war.
3.3 Stabile Transfektion von THP-1-Zellen

3.3.1 Expressionsrate von 27E10 auf THP-1-Zellen

Abbildung 3.8: Vergleich der 27E10-Oberflächenexpression von primären Makrophagen und THP-1-Zellen.

3.3.2 Klonierungsstrategie

Um die DNA der beiden Gene für das Epitop von 27E10 zu klonieren, wurde zunächst genomische DNA aus THP-1-Zellen isoliert. Die Amplifikation der gewünschten 5'-regulatorischen Sequenzen erfolgte mit Hilfe der Polymerase-Kettenreaktion (PCR), wodurch die DNA-Fragmente zusätzlich mit geeigneten Restriktionsschnittstellen versehen wurden. Die cDNA der Gene, die nur die Exon-Sequenzen beinhaltet, wurde mit Hilfe der reversen Transkriptase-Reaktion mit anschließender PCR aus entsprechender mRNA erhalten. Die so hergestellten DNA-Fragmente aus 5'-regulatorischer Sequenz und der cDNA wurden in Plasmide kloniert, die die Reportergene DsRed bzw. AcGFP enthielten (siehe 1.6.1). Die verwendeten Restriktionsschnittstellen wurden auf ihre Einmaligkeit in den Vektoren und der entsprechenden DNA-Sequenz der Gene überprüft.

Zunächst wurde der CMV-Promotor aus beiden Vektoren über die internen Schnittstellen PscI (Position 4634) und NheI (in der MCS) entfernt, da die Expression unter den endogenen S100A8- bzw. S100A9-Promotoren erfolgen sollte. Beide Promotor-Fragmente wurden während der PCR am 5'-Ende mit einer PscI- und am 3'-Ende mit einer NheI-Schnittstelle versehen, über die diese Fragmente in den entsprechenden Vektor kloniert werden konnten. Die cDNA von S100A8 wurde über NheI und SacI in der MCS unidirektional in den pDsRed-Monomer-N1-Vektor kloniert, während die S100A9-cDNA über NheI und HindIII in den pAcGFP1-Hyg-N1-Vektor kloniert wurde. Diese Restriktionsschnittstellen erlaubten eine Klonierung der Fragmente in frame, das heißt, der offene Leserahmen wurde nicht verschoben. Mit den so hergestellten Plasmiden (pDsRedxS100A8 und pAcGFP1xS100A9) konnten die THP-1-Zellen stabil transfiziert werden.

3.3.3 Stabile Klone

Nach der Transfektion mit den entsprechenden Plasmiden (siehe 3.3.2) wurden positive Klone mittels der Antibiotika G418 (pDsRedxS100A8) bzw. Hygromycin B (pAcGFP1xS100A9) selektiert. Dazu wurde zunächst die Dosis-Wirkungsabhängigkeit der Antibiotika untersucht. Für G418 wurde eine optimale Konzentration von 750 μg/ml, für Hygromycin eine Konzentration von 500 μg/ml ermittelt (siehe 2.13.2 und 2.25).

Abbildung 3.9: *dot plots* und Histogramme derDsRed-Expression.

Nicht-transfizierte THP-1-Zellen und die positiven Klone wurden nach 14-tägiger Kultivierung mittels Durchflusszytometrie analysiert. Mit Hilfe des Vorwärts- (FSC) und des Seitwärts-scatters (SSC) wurden die verschiedenen Populationen für die Fluoreszenzmessung selektiert (*Gate* 1 bis 5, G1 bis G5). Die Histogramme der durchflusszytometrischen Messung stellen die Fluoreszenz der einzelnen Populationen in den verschiedenen *Gates* dar.

Abb. 3.9) exprimierte DsRed konstitutiv, da sie auch ohne PMA- bzw. PMA/LPS-Stimulation eine deutliche Fluoreszenz zeigte. Die andere Population (Gate 3, G3 für Klon2 bzw. Gate 5, G5 für Klon6; Abb. 3.9) exprimierte DsRed dagegen nur nach PMA- bzw. PMA/LPS-Stimulierung. Dies wird anhand der overlays in Abbildung 3.10 deutlich, in denen die Histogramme für die DsRed-Expression der Klone nach PMA- bzw. PMA/LPS-Stimulation über die Expression im unstimulierten Zustand gelegt wurden. Nach der Stimulation verschob sich die nicht-fluoreszierende Population von Klon2 bzw. Klon6 in dem Histogramm nach rechts und zeigte die gleiche Fluoreszenzintensität wie die konstitutiv fluoreszierende Population. Die Stimulation mit LPS zusätzlich zu PMA resultierte nicht in einer Steigerung der DsRed-Expression (Abb. 3.10).

Abbildung 3.10: Durchflusszytometrische Analyse der DsRed-Expression nach PMA- bzw. PMA/LPS-Stimulation.

Dass die DsRed-Expression mit der Expression von 27E10 korreliert, zeigt Abbildung 3.11. Klon2 bzw. Klon6 wurden sowohl im unstimulierten Zustand als auch nach PMA/LPS-Stimulation mit dem FITC-konjugierten Antikörper 27E10 markiert und zeigten bei der durchflusszytometrischen Analyse ähnliche Histogramme wie für die DsRed-Fluoreszenz erhalten wurden (vergleiche Abb. 3.9 und Abb. 3.10).

Die Zellen wurden nach Kultivierung ohne Stimulation bzw. nach PMA/LPS-Stimulation mit dem 27E10-Antikörper markiert und mittels Durchflusszytometrie analysiert (vergleiche Abb. 3.9 und 3.10).

Während die Fluoreszenz von Klon6 nach PMA/LPS-Stimulation im Fluoreszenzmikroskop kaum sichtbar wurde (Abb. 3.12, B, rechts), war sie im konfokalen Lasermikroskop deutlich zu sehen (Abb. 3.12, C, rechts). Hier wurde auch die Fluoreszenz von Klon6 ohne vorherige Stimulation analysiert. Die Mittlere der unteren Aufnahmen in Abb. 3.12 (C) zeigt die bereits bei der Durchflusszytometrie ermittelte, konstitutive Expression von DsRed durch einen Teil der Zellen. Durch Stimulation mit PMA/LPS ließ sich der Anteil der fluoreszierenden Zellen steigern (Abb. 3.12, C, rechts; vergleiche Abb. 3.9 und 3.10). Die Verteilung des fluoreszierenden Reporterproteins innerhalb der Zelle war dabei diffus, das heißt, sie konnte keiner zellulären Struktur zugeordnet werden. Die lichtmikroskopische Aufnahme von Klon6 bestätigt, dass sich in Kultur Zellen unterschiedlicher Größe entwickelten (Abb. 3.12, A,
rechts, Pfeile), was in der Kultur von nicht-transfizierten THP-1-Zellen nicht beobachtet wurde (Abb. 3.12, A, links).

Abbildung 3.12: Lichtmikroskopische (A) und fluoreszenzmikroskopische (B, C) Aufnahmen von Klon6 im Vergleich zu nicht-transfizierten THP-1-Zellen.

(A) Lichtmikroskopische Aufnahme von THP-1-Zellen und Klon6 in Kultur. Die Pfeile markieren die sich bildenden, vergrößerten Zellen (vergleiche Abb. 3.9). (B) Klon6 und nicht-transfizierte THP-1-Zellen wurden nach 48-stündiger Kultivierung mit PMA für weitere 24 Stunden mit LPS stimuliert und mit einem konventionellen Fluoreszenzmikroskop untersucht. (C) Klon6 und nicht-transfizierte THP-1-Zellen wurden wie unter (B) beschrieben stimuliert und mit Hilfe eines konfokalen Lasermikroskops analysiert. Zusätzlich wurden nicht stimulierte Klon6-Zellen (C, Mitte) untersucht.
Um den Befund zu klären, dass sich die transfizierten THP-1-Zellen in Kultur in zwei Populationen aufspalten, wurden die Zellen mit Hilfe eines FACSAría™ **cell sorters** entsprechend ihrer Fluoreszenz in zwei Populationen aufgeteilt, getrennt kultiviert und erneut mittels Durchflusszytometrie analysiert. Die Ergebnisse sind in Abbildung 3.13 dargestellt. Da sich die Ergebnisse für die beiden Klone nicht unterschieden, sind exemplarisch die Resultate für Klon6 abgebildet.

Wie erwartet ergaben sich während der Sortierung von Klon2 bzw. Klon6 zunächst zwei verschiedene Populationen, von denen die eine Subpopulation das Reporterprotein DsRed konstitutiv exprimierte. Der Anteil dieser Zellen betrug mit 500 000 zu 7 000 000 nicht-fluoreszierender Zellen nur ca. 7 % der Gesamtpopulation. Aufgrund der konstitutiven Expression wurde diese Population als Klon2k bzw. Klon6k bezeichnet. Nach siebentägiger Kultivierung behielten diese Zellen die Fähigkeit zur konstitutiven DsRed-Expression (Abb. 3.13, rechts), zeigten aber keine Proliferation, da nach dieser Kultivierungsduer erneut nur 500 000 Zellen gezählt wurden. Die zweite sortierte Zellpopulation zeigte nach siebentägiger Kultivierung eine erneute Aufspaltung in zwei Subpopulationen, wobei eine der Populationen wieder konstitutiv fluoreszierte (Abb. 3.13, G2). Diese Aufspaltung ist nicht so deutlich wie in Abb. 3.9, was vermutlich auf die kurze Kultivierungsduer von sieben Tagen zurückzuführen ist.

Die Resultate nach PMA- bzw. PMA/LPS-Stimulation waren dieselben wie in Abb. 3.10 dargestellt (Daten nicht gezeigt). Die so erzeugte transgene THP-1-Zelllinie eignet sich, die Entstehung des 27E10+-Makrophagensubtypen anhand der Fluoreszenz in Echtzeit zu verfolgen. Ein Teil der Zellen fluoresziert zwar konstitutiv DsRed, aber erst nach Stimulation zeigt die Mehrheit der Population die erwartete Fluoreszenz.
Abbildung 3.13: *dot plots* und Histogramme für pDsRedxS100A8 und pDsRedxS100A8k nach der Sortierung.

Die Zellen wurden nach der Sortierung sieben Tage ohne Stimulierung kultiviert und mittels Durchflusszytometrie analysiert. Mit Hilfe des Vorwärts- (FSC) und des Seitwärts-scatters (SSC) wurden die verschiedenen Populationen für die Fluoreszenzmessung selektiert (*Gate* 1 bis 3, G1 bis G3). Die Histogramme der durchflusszytometrischen Messung stellen die Fluoreszenz der einzelnen Populationen in den verschiedenen *Gates* dar.
4. Diskussion

Da in der vorliegenden Arbeit der Effekt der Topographie untersucht werden sollte, war es wichtig, dass alle Strukturen die gleiche Oberflächenchemie zeigten, um diesen Einfluss auszuschließen. Da alle PVDF-Oberflächen mit Temperaturen von über 150°C bzw. Laserablation in der Gegenwart von Sauerstoff behandelt wurden, wurde die elementare Zusammensetzung der Oberflächen mit Hilfe der XPS analysiert. In allen PVDF-Oberflächen
wurden kleine Mengen (1,4 - 2,7 Atom-%) an Sauerstoff gefunden. Klee et al. zeigten, dass unmodifizierte PVDF-Filme üblicherweise einen Sauerstoffgehalt von ca. 2,5 Atom-% besitzen (Klee et al., 2003). Der Sauerstoffgehalt der hier verwendeten PVDF-Oberflächen kann daher nicht durch Oxidationsprozesse während der Herstellung verursacht worden sein und sollte daher vernachlässigbar sein. Die XPS-Analyse der Oberflächenchemie zeigte außerdem, dass die für die Nanostrukturierung verwendeten Aluminiumoxid-Partikel vollständig in dem PVDF eingebettet waren, so dass die in der vorliegenden Arbeit gefundenen Effekte auf die Makrophagen ausschließlich auf die verschiedenen Topographien zurückzuführen sind.

Diese Effekte der Topographie auf die Makrophagen wurden auf verschiedenen Ebenen untersucht. Zunächst wurde die Morphologie der Zellen lichtmikroskopisch untersucht. Nach siebentägiger Kultivierung auf den unterschiedlichen Strukturen waren die Zellen adhärent und vital, was die kürzlich demostrierte Biokompatibilität von PVDF auch für humane Makrophagen bestätigt (Neuss et al., 2008). Die Zellen auf der Kontrolle zeigten dabei eine ähnliche amöboide Morphologie wie die LPS-stimulierten Makrophagen, im Gegensatz zu den Zellen auf der Nanostruktur, die kleiner und kugelig waren. Die gestreckte, spindelförmige Morphologie der Makrophagen, die sich auf der Noppenstruktur entwickelte, wurde von Verreck et al. mit dem alternativ-aktivierten M2-Subtypen assoziiert (Verreck et al., 2006). Die Morphologie der Zellen auf der Rillenstruktur konnte aufgrund der Lichtundurchlässigkeit dieser Probe nicht untersucht werden, so dass eine mögliche Anordnung der Zellen entlang der Rillen, wie sie von Meyle et al. für humane Makrophagen beschrieben wurde (Meyle et al., 1995), nicht überprüft werden konnte.

Ein wichtiges Indiz dafür, ob sich eine pro- oder eine anti-inflammatorische Antwort von Makrophagen entwickelt, ist die Expression der funktionsassozierten Oberflächenmarker CD163 und 27E10. Zwadlo et al. entwickelten monoklonale Antikörper gegen diese Epitope und assoziierten sie mit den verschiedenen Makrophagen-Phänotypen: RM3/1 (anti-CD163) markiert dabei den M2-Subtypen, 27E10 (anti-S100A8/S100A9) hingegen den M1-Subtypen (Zwadlo et al., 1986; Zwadlo et al., 1987; Hogger et al., 1998). In der vorliegenden Arbeit wurde gezeigt, dass sowohl die Rillen- als auch die Noppenstruktur einen Phänotypen induziert, der Eigenschaften des M1- und M2-Subtypen vereint, da die Expression beider Oberflächenmarker hoch reguliert wurde. Anhand der Ergebnisse für die Nanostruktur, die im Vergleich zur Kontrolle keinen Einfluss auf die Expression der untersuchten Oberflächenmoleküle hatte, zeigt sich, dass die gefundenen Effekte spezifisch für die Noppen- bzw. die Rillenstruktur sind.

Während die Nano- und die Rillenstruktur im Vergleich zur Kontrolle kaum Einfluss auf die Sekretion der untersuchten Mediatoren hatte, induzierte die Noppenstruktur ein spezifisches Muster an Cytokinen und Chemokinen, das vorwiegend proinflammatorisch erschien, da typische inflammatorische Mediatoren wie IL-1β, IL-6, CCL2 und CCL3 hoch reguliert wurden. Zusätzlich wurden anti-inflammatorische Cytokine (IL-10, IL-1RN) durch die Noppenstruktur nicht beeinflusst bzw. herunter reguliert. Im Gegensatz dazu wurden aber auch einige durch LPS-stimulierte proinflammatorische Mediatoren durch die Noppenstruktur nicht reguliert (CCL5 und CCL4) oder sogar inhibiert (CXCL10).

Auch die Freisetzung von Wachstumsfaktoren wurde durch die Noppenstruktur reguliert. Während die Produktion von VEGF und G-CSF durch die Noppenstruktur induziert wurde, wurde PDGF herunter reguliert. Diese Proteinsekretionsdaten konnten mit Hilfe eines DNA microarray auf mRNA-Ebene weitestgehend verifiziert werden.

Zusammenfassend unterstützen diese Daten die These, dass sich auf der Noppenstruktur ein intermediärer Phänotyp mit M1- und M2-Charakteristika entwickelt. Die proinflammatorischen Eigenschaften sind dabei in Bezug auf die Cytokin-Sekretion stärker betont. Interessanterweise unterscheidet sich dabei das Sekretionsmuster auf der Noppenstruktur deutlich von dem, das durch LPS-Stimulation induziert wurde.

Es existieren bereits Studien, die demonstrieren, dass Topographie die Sekretion von Cytokinen beeinflusst. Diese Studien beschränken sich aber auf den Vergleich von glatten zu rauen Oberflächen im nm-Bereich. So zeigten Refai et al., dass RAW 264.7-Makrophagen auf rauen Titanium-Oberflächen proinflammatorische Mediatoren wie TNF-α, CCL2 und CCL3 sekretierten (Refai et al., 2004). Rice et al. untersuchten die Cytokin-Expression von primären humanen Makrophagen auf nanostrukturierten Titanium-Oberflächen, bestehend aus 110 nm hohen Halbkugeln in verschiedener Dichte. Diese Oberflächen induzierten die Sekretion von IL-1β und TNF-α (Rice et al., 2003).

Diese in den oben genannten Studien beschriebenen proinflammatorischen Cytokine wurden auch in der vorliegenden Arbeit durch Topographie induziert. Allerdings erfolgte hier die
Diskussion

Induktion durch die definierte Noppenstruktur im μm-Bereich und nicht durch die raue Nanostruktur.

In Bezug auf die Biokompatibilität eines Materials spielen diese proinflammatorischen Cytokine eine entscheidende Rolle. IL1-β ist ein Schlüsselmediator von inflammatorischen Reaktionen und vermittelt die Akute-Phase-Reaktion, die eine akute Entzündungsantwort darstellt (Dinarello, 1985). Weiterhin wird IL-1β für die Angiogenese benötigt (Voronov et al., 2003). Im Zusammenhang mit Implantaten scheint dieses Cytokin zusammen mit TNF-α eine zentrale Rolle bei der aseptischen Lockerung von orthopädischen Implantaten zu spielen (Konttinen et al., 1996; Robinson et al., 1999). Dabei wird IL-1β als potenter Mediator der Knochenlyse beschrieben (al Saffar et al., 1994) und auch TNF-α aktiviert und rekrutiert Osteoklasten (Xu et al., 1996). CCL2 und CCL3 spielen als Chemoattraktoren für inflammatorische Zellen eine wichtige Rolle bei der Entstehung von Entzündung. CCL2 ist dabei verantwortlich für die Rekrutierung von Monozyten in akuter Entzündung, scheint aber auch ein wichtiger Mediator bei der Entstehung von chronischer Entzündung zu sein (Jiang et al., 1992). Nakashima et al. untersuchten Gewebeproben von fehlgeschlagenen Gelenkplastiken und fanden erhöhte CCL2- und CCL3-Level in diesen Proben (Nakashima et al., 1999).

VEGF, das ebenfalls durch die Noppenstruktur hoch reguliert wurde, spielt als angiogenetischer Faktor eine wichtige Rolle bei der Angiogenese in durch Implantation geschädigtem Gewebe. Lode et al. immobilisierten VEGF an Knochenzement und zeigten einen positiven Effekt auf die Endothelzellproliferation (Lode et al., 2007) Die Studie von Spanogle et al. deutet allerdings auf einen osteolytischen Effekt von VEGF und eine damit verbundene Implantatlockerung (Spanogle et al., 2006).

VEGF spielt auch bei tissue engineering-Ansätzen eine wichtige Rolle. Eines der größten Probleme bei der Implantation von in vitro gezüchtetem Gewebe ist eine unzureichende Vaskularisierung speziell im Inneren des Transplantats, was zur Schrumpfung oder zum Absterben des Gewebes führt (Nomi et al., 2006). In zahlreichen Studien wurde daher die Kopplung von VEGF an Biomaterialien untersucht, um die Neovaskularisierung des Gewebes zu fördern. Koch et al. zeigten, dass an Kollagen gebundenes VEGF einen signifikanten Effekt auf die Bildung von Mikrogefäßen hatte (Koch et al., 2006). Sharon und Puleo immobilisierten VEGF an ein biodegradierbares Polymer und erhöhten damit die Proliferationsrate von Endothelzellen (Sharon et al., 2008).

G-CSF ist ein hämatopoetischer Wachstumsfaktor, der die Produktion und Differenzierung von Neutrophilen reguliert (Kuwabara et al., 2001). Dabei spielt G-CSF eine wichtige Rolle in der inflammatorischen Antwort und wird als proinflammatorisches Cytokin betrachtet (Eyles et al., 2006). Es wurde aber gezeigt, dass G-CSF gleichzeitig einen anti-inflammatorischen
Immunregulator darstellt, indem dieser Faktor die proinflammatorischen Mediatoren IL-1, TNF-α und IFN-γ herunter reguliert (Hartung, 1998; Buzzeo et al., 2007).

Zusätzlich zu der Verifizierung der oben dargestellten Proteindaten wurden durch die Genexpressionsanalyse zahlreiche Gene identifiziert, die durch Topographie reguliert werden. Untersucht wurde die Genexpression der Makrophagen auf der Noppenstruktur und nach LPS-Stimulierung im Vergleich zur Kontrolle. Da die Rillen- und die Nanostruktur bei der Proteinsekretion kaum Unterschiede zur Kontrolle zeigten, wurde hier auf eine Genexpressionsanalyse verzichtet.

Unter den Genen, die durch die Noppenstruktur und nicht durch LPS reguliert wurden (siehe 3.2.5, Tab. 3.3, A), waren Elastase 2 (ELA2), Cathepsin G (CTSG), Myeloperoxidase (MPO) und Tryptase α/β 1 (TPSAB1). Diese Proteasen sind mit der promonozytären Phase der myeloiden Differenzierung assoziiert und werden generell nicht von reifen Makrophagen exprimiert (Huang et al., 1993; Srikanth et al., 1994; Malle et al., 2007). Es gibt aber Hinweise darauf, dass reife Makrophagen im Zusammenhang mit Artheriosklerose die Fähigkeit zur MPO-Produktion wiedererlangen können (Klebanoff, 2005). Im Zusammenhang mit Implantaten wurde gezeigt, dass in entzündetem Gewebe um Dentalimplantate erhöhte MPO-Konzentrationen zu finden waren. MPO wurde deshalb als Marker für entzündetes Gewebe bezeichnet (Liskmann et al., 2004; Tozum et al., 2007; Guncu et al., 2008).

Ein weiteres Gen, das durch die Noppenstruktur reguliert wurde, war CCR3. Dieser CC-Chemokin-Rezeptor bindet CCL11, CCL5 und CCL17 und wird üblicherweise nur auf Eosinophilen exprimiert (Ponath et al., 1996). Mantovani et al. beschrieben aber eine geringe CCR3-Expression auch auf Monozyten (Mantovani et al., 2004).

Ein weiteres durch die Noppenstruktur induziertes Gen codiert den Rezeptor Stabilin-1. Dieser multifunktionale Scavenger-Rezeptor wird nach Glucocorticoid- oder IL-4-Stimulation von alternativ-aktivierten M2-Makrophagen exprimiert und vermittelt die Endozytose des secreted protein acidic and rich in cysteine (SPARC; Kzhyshkowska et al., 2006). SPARC ist eine nicht-strukturelle ECM-Komponente, die beim Gewebeumbau und in der Angiogenese eine wichtige Rolle spielt. Durch die Beseitigung von SPARC durch Stabilin-1 aus dem extrazellulären Raum regulieren alternativ-aktivierte Makrophagen die Geweberegeneration und vermitteln so die Wundheilung (Kzhyshkowska et al., 2006).

In Übereinstimmung mit der Phänotypisierung auf Proteinebene wurde auch das Gen für den M2-Marker CD163 auf der Noppenstruktur induziert. Zusätzlich zu diesen M2-assoziierten Genen wurden ebenfalls Gene durch die Topographie hoch reguliert, die mit M1-Makrophagen assoziiert werden. IL1R1 ist in der Entstehung von Entzündung involviert, indem es als Rezeptor für IL-1 die Induktion inflammatorischer Zellen durch dieses Cytokin vermittelt (Schreuder et al., 1997).

S100A9, das für ein Protein des M1-Markers 27E10, dem Heterodimer S100A8/S100A9 codiert, wurde ebenfalls durch die Noppenstruktur induziert, so wie es anhand der Proteindaten erwartet wurde. Die Expression vieler Gene, die bekanntermaßen durch LPS reguliert werden wie die Gene für die proinflammatorischen Chemokine CCL19, CCL20 und CCL7 (Polentarutti et al., 1997; Mantovani et al., 2004) sowie PTGS2, das die induzierbare Cyclooxygenase 2 codiert (Weilin et al., 1992), wurden durch die Topographie nicht beeinflusst (siehe 3.2.5, Tab. 3.3, B). Der tissue inhibitor of metalloproteinase 2 (TIMP2) und der colony stimulating factor 1-Rezeptor (CSF1R), die ebenfalls nicht durch die Noppenstruktur reguliert wurden, wurden durch LPS herunter reguliert, wie bereits beschrieben wurde (Lacraz et al., 1995; Sester et al., 2005). Unter den LPS-regulierten Genen waren aber auch solche zu finden, die ebenfalls durch die Topographie beeinflusst wurden (siehe 3.2.5, Tab. 3.3, D). So wurden die M1-assoziierten Gene IL7R und CCR7 durch LPS und Topographie induziert, während die M2-assoziierten Gene CCL22 und FN1 (Mantovani et al., 2004; Martinez et al., 2006) herunter reguliert wurden. Wie bereits auf Proteinebene gezeigt, wurde auch das S100A8-Gen durch die Noppenstruktur induziert. CASP1, das das Enzym Caspase-1 codiert, wurde ebenfalls durch die Noppenstruktur und LPS hoch reguliert. Die Induktion durch LPS wurde bereits beschrieben (Martinon et al., 2002). Durch die biologische Funktion von Caspase-1, die Spaltung von proIL-1β in seine bioaktive Form, spielt dieses Enzym eine wichtige Rolle in Entzündung. In Gewebe um gelockerte Hüftprothesen wurden erhöhte Syntheseraten von Caspase-1 gefunden (Li et al., 2002). PTGS1, das die konstitutive Cyclooxygenase-1 codiert, sowie CSF1 und Cytochrom P450 (CYP27B1) wurden durch LPS und die Noppenstruktur herunter reguliert.

Interessanterweise wurden auch Gene gefunden, die durch LPS und Topographie gegensätzlich reguliert wurden (siehe 3.2.5, Tab. 3.3, C). Darunter war zum Beispiel SEPP1, das das Selenoprotein P, Plasma 1 codiert und durch die Noppenstruktur induziert wurde, während LPS die Expression reprimierte. SEPP1 wurde im Rahmen einer Studie zur Identifizierung eines M1- bzw. M2-Zell-spezifischen Genprofils als IL-10-induzierbares M2-assoziiertes Gen beschrieben (Ghassabeh et al., 2006). Die Funktion dieses Proteins in Makrophagen ist bisher nicht bekannt. Saito et al. zeigten einen protektiven Effekt von SEPP1 auf intra- und extrazelluläre Moleküle vor oxidativem Stress (Saito et al., 1999).
Ein weiteres M2-assoziiertes Gen, das durch die Noppenstruktur hoch reguliert und durch LPS herunter reguliert wurde, ist HMOX-1. Das hierdurch codierte Protein, die Hämoxygenase-1, ist ein Enzym des Häm-Katabolismus, dessen Aktivierung zu der Entstehung von Biliverdin, freiem Eisen und Kohlenmonoxid (CO) führt (Maines, 1997; Otterbein et al., 2000) und in dem Schutz vor oxidativem Stress involviert ist (Otterbein et al., 2000). Die Expression von HMOX-1 ist durch IL-10 induzierbar (Philippidis et al., 2004). Lee und Chau zeigten, dass CO die LPS-induzierte Produktion von proinflammatorischen Cytokinen inhibiert und postulierten, dass HMOX-1 über die Bildung von CO den anti-inflammatorischen Effekt von IL-10 vermittelt (Lee et al., 2002).

SLCO2B1, das ebenfalls durch die Topographie induziert wurde, codiert einen Transporter, der kürzlich als der am häufigsten vorkommende Transporter in reifen Makrophagen identifiziert wurde (Skazik et al., 2008).

TAP1, das einen weiteren Transporter codiert, wurde durch die Noppenstruktur reprimiert, während das Gen durch LPS induziert wurde, wie bereits von Schiffer et al. beschrieben. TAP1 ist in der Präsentation von endogenen Proteinen durch MHC Klasse I-Moleküle involviert (Schiffer et al., 2002).

In der vorliegenden Arbeit konnte erstmals gezeigt werden, dass eine definierte Topographie Einfluss auf den Phänotyp, die Freisetzung von inflammatorischen Mediatoren und die Genexpression von primären humanen Makrophagen hat. Dabei führte eine PVDF-Oberfläche mit 1 μm hohen Noppen zu der Entwicklung eines intermediären Makrophagen-Phänotyps, der sich von den bisher beschriebenen Subtypen unterscheidet, indem er sowohl pro- als auch anti-inflammatorische Eigenschaften in sich vereint. Dass die raue Nanostruktur im Vergleich zur Kontrolle diese Aktivierungsparameter kaum beeinflusste zeigt, dass die Reaktion der Makrophagen spezifisch für diese genau definierte Topographie ist. Die durch LPS induzierte Antwort der Makrophagen war deutlich verschieden von der auf der Noppenstruktur, was auf einen unterschiedlichen Aktivierungszustand dieser Zellen hindeutet. Eine Rillenstruktur mit 500 nm breiten Kerben führte ebenfalls zu einem Phänotyp, der sowohl den M1- als auch den M2-Oberflächenmarker (27E10 und CD163) exprimierte, die Sekretion der untersuchten inflammatorischen Mediatoren war aber annähernd identisch mit der auf der glatten Kontrolle.
Die in dieser Arbeit gewonnenen Erkenntnisse deuten darauf hin, dass die Oberflächen-
topographie die inflammatorische Potenz von Materialien mit bestimmt und damit die
Biokompatibilität von Implantaten beeinflussen kann.

Die Mechanismen, die in der topographischen Kontrolle von Zellen involviert sind, sind
weitestgehend unbekannt. Ingber schlug vor, den Aufbau der Zelle mit dem tensegrity-Modell
der Architektur zu vergleichen (Ingber, 1993). Tensegrity ist ein von dem Architekten Fuller
und dem Künstler Snelson geprägtes Kunstwort aus tension (dt.: Spannung) und integrity
[dt.: Zusammenhalt; (Fuller, 1961)]. Es beschreibt ein Tragwerkssystem, in dem sich
Strukturen durch Druck und Spannung selbst stabilisieren. Übertragen auf die Zelle verglich
Ingber die Druckelemente mit den Mikrotubuli und die Zugelemente mit den Mikrofilamenten,
die über focal adhesions, Komplexen aus Integrinen und Aktin-bindenden Proteinen
(Yamada et al., 1997), mit der ECM bzw. mit dem Substrat verbunden sind. Die
Intermediärfilamente verbinden die tensegrity-Stuktur mit den Lamininen des Zellkerns
(Inberger, 1993; Ingber, 2003). Maniotis et al. vermuteten, dass durch diese mechanische
Kopplung des Zellkerns mit der Gesamtheit der Zelle über die Intermediärfilamente,
eine Verformung der Zelle zu der Deformation des Zellkerns führen kann (Maniotis et al., 1997).
Die daraus resultierende Veränderung der dreidimensionalen Struktur des Genoms kann die
Genexpression verändern (Getzenberg, 1994). Bezogen auf die topographische Kontrolle
bedeutet diese direkte Mechanotransduktion, dass die Oberflächenmorphologie eines
Substrates die Nukleus-Morphologie und damit die Position der Chromosomen beeinflusst,
wodurch die Genexpression der Zelle verändert wird (Dalby, 2005). Abbildung 4.1 stellt das
auf die Zelle übertragene tensegrity-Modell graphisch dar.

Ein weiterer Ansatz, um die Mechanotransduktion zu erklären, sind indirekte Mechanismen,
die die äußere Deformation der Zelle über chemische Signale zum Zellkern weiterleiten.
Diese Mechanismen beinhalten drucksensitive Mechanorezeptoren, G-Proteine und Kinasen
(Dalby, 2005). Farrugia et al. identifizierten einen mechanosensitiven Calcium-Kanal in
glatten Muskelzellen (Farrugia et al., 1999). Die bereits beschriebenen Veränderungen in der
Zytoskelett-Konformation, die während der direkten Mechanotransduktion auftreten, spielen
auch bei der chemischen Signaltransduktion eine Rolle. Diese Konformationsänderungen
resultieren in der Aktivierung von an das Zytoskelett gekoppelten G-Proteinen und Kinasen,
was zu einer komplexen Signaltransduktionskaskade innerhalb der Zelle führt (Juliano et al.,
1993; Burridge et al., 1996).

Die in der vorliegenden Arbeit gewonnenen Genexpressionsdaten können zu einem tieferen
Einblick in die Mechanismen der Mechanotransduktion von Zellen verhelfen, indem weitere
Gene identifiziert werden könnten, die bei diesen Mechanismen eine Rolle spielen.
Ein weiteres Ziel der vorliegenden Arbeit war die stabile Transfektion der monozytären Zelllinie THP-1 mit den Konstrukten pDsRedxS100A8 und pAcGFPxS100A9. Diese Zellen sollen dazu dienen, die 27E10-Expression in Echtzeit anhand von Fluoreszenz zu verfolgen. Während zwei positive Klone für das erste Konstrukt (pDsRedxS100A8) erhalten wurden, war die Co-Transfektion mit beiden Konstrukten nicht erfolgreich. Dies ist vermutlich darauf zurückzuführen, dass die Integration von DNA-Fragmenten in das Genom der Zielzelle ein seltenes Ereignis darstellt.

5. Zusammenfassung

In der vorliegenden Arbeit wurde die inflammatorische Potenz mikro- und nanostrukturierter Polymeroberflächen auf primäre humane Makrophagen untersucht. Dazu wurden unterschiedlich strukturierte Polyvinylidenfluorid (PVDF)-Oberflächen hergestellt, auf denen die Makrophagen kultiviert wurden. Diese Oberflächen beinhalteten sphärolitisches PVDF als glatte Kontrolle, eine mikrostrukturierte Topographie mit 1 µm hohen Noppen, eine Struktur mit ca. 500 nm breiten Rillen sowie eine nanostrukturierte Topographie mit einer Rauheit unter 100 nm. Die chemische Analyse zeigte die gleiche Oberflächenchemie von PVDF für alle Topographien. Als Kontrolle für die allgemeine Aktivierungskapazität der Makrophagen wurden die Zellen für 24 Stunden mit LPS stimuliert.

Nach siebentägiger Kultivierung zeigten die Makrophagen deutliche morphologische Unterschiede auf den verschiedenen Topographien. Während die Zellen auf der glatten Kontrolle eine ähnlich amöboide Form zeigten wie die LPS-stimulierten Makrophagen, waren die Zellen auf der mikrostrukturierten Oberfläche spindelförmig gestreckt. Auf der nanostrukturierten Topographie besaßen die Makrophagen dagegen eine runde Morphologie.

Um den Phänotyp, der sich auf den verschiedenen Topographien entwickelte, genauer zu untersuchen, wurde die Expression von funktionsassozierten Oberflächenmarkern untersucht. Mit Hilfe der Durchflusszytometrie wurde gezeigt, dass die Noppen- und die Rillenstruktur sowohl die Expression des anti-inflammatorischen CD163 als auch des proinflammatorischen 27E10 im Vergleich zur glatten Kontrolle induzierten. Die nanostrukturierte Oberfläche hatte dagegen keinen Effekt auf die Expression dieser Marker. Diese Ergebnisse deuten daraufhin, dass sich auf der Noppen- und der Rillenstruktur ein intermediärer Makrophagen-Phänotyp entwickelte, der sowohl Eigenschaften des proinflammatorischen M1- als auch des anti-inflammatorischen M2-Subtypen besitzt.

Um den Aktivierungszustand der Makrophagen auf den verschiedenen Topographien näher zu bestimmen, wurden die Konzentrationen von inflammatorischen Mediatoren in den Kulturüberständen der Zellen gemessen. Während einige proinflammatorische Mediatoren wie IL-1ß, CCL2 und CCL3 durch die Noppenstruktur und LPS induziert wurden, wurden andere wie IL-12 und CCL5 nur durch LPS reguliert. Das durch LPS induzierte Chemokin CXCL10 wurde durch die Noppenstruktur herunter reguliert. Das anti-inflammatorische Cytokin IL-1RN wurde durch LPS und die Noppenstruktur reprimiert. Diese Proteindaten wurden mit Hilfe eines DNA microarrays auf mRNA-Ebene weitestgehend bestätigt. Die Rillen- und die Nanostruktur beeinflussten die Freisetzung der untersuchten Mediatoren dagegen im Vergleich zur glatten Kontrolle kaum.
Zusätzlich wurden durch den *DNA microarray* weitere durch die Topographie regulierte Gene identifiziert, darunter sowohl M1-assoziierte Gene wie IL1R1 und IL7R als auch M2-assoziierte wie CD209, SEPP1 und STAB1. Diese Gene wurden durch LPS-Stimulation zum Teil gleich wie IL7R und CASP1, zum anderen gegenläufig reguliert wie SEPP1 und HMOX1.

Zusammenfassend zeigen die gewonnenen Daten, dass Topographie eine inflammatorische Antwort auslösen kann und somit die Modifizierung der Topographie die inflammatorische Potenz eines Materials beeinflusst.

6. **Summary**

In this study the influence of surface topography on the inflammatory response of human macrophages was investigated. For this, differently structured polyvinylidene fluoride (PVDF) surfaces were generated; including (i) a smooth surface of PVDF spherolites serving as a control, (ii) a randomly nanotextured surface with embedded alumina particles, (iii) a structure with 500 nm wide grooves, and (iv) a microstructure with 1 μm high bumps generated by laser ablation. These structures were verified by white light interferometry and X-profile analysis, and the identical chemistry of all PVDF surfaces was demonstrated by X-ray photoelectron spectroscopy. Macrophages were cultured on the different topographies and as a control for the activation capacity cells were treated with LPS for 24 hours. After seven days of culture the macrophages' morphology clearly differed on the different topographies. Whereas the cells on the control exhibited an amoeboid morphology similar to LPS stimulated macrophages, the cultivation on the microstructure resulted in stretched spindle-shaped macrophages. The macrophages on the nanotexture demonstrated a round shape.

To investigate the phenotype evolved from the different topographies the macrophages were stained with monoclonal antibodies against function associated surface markers. Both the microstructure and the grooved structure induced the expression of the M1-associated 27E10 and the M2-associated CD163. The nanotexture did not alter the expression of these markers compared to control suggesting that the microstructure and the grooved structure induced an intermediate phenotype with both anti- and proinflammatory properties.

To determine the activation state of the macrophages on the different topographies the concentrations of inflammatory mediators in the culture supernatant were measured. Some proinflammatory mediators like IL-1β, CCL2 and CCL3 were upregulated by the microstructure and LPS, whereas others like IL-12 and CCL5 were only induced by LPS. The LPS induced CXCL10 was downregulated by the microstructure. The anti-inflammatory cytokine IL-1RN was repressed by LPS and the microstructure. These protein data could mostly be confirmed on mRNA level using a DNA microarray. The grooved and the nanotextured topography did mostly not alter the secretion of the investigated mediators compared to the control.

Additionally, the DNA microarray identified further genes regulated by topography including both M1- associated genes like IL1R1 and IL7R, and those associated with M2 responses like CD209, SEPP1 and STAB1. Some of the genes were regulated similarly by LPS like IL7R and CASP1, whereas the regulation of others was opposed like SEPP1 and HMOX1.
The present results demonstrate that the microstructured topography significantly affects the activation of primary human macrophages by inducing a specific cytokine and gene expression profile. This activation resulted in a subtype of macrophages with pro- but also anti-inflammatory properties. The cytokine secretion pattern and the gene expression profile clearly differed from that induced by LPS suggesting a specific activation state of the cells. The phenotype was clearly due to this particular surface since the grooved structure and the nanotexture had nearly no effect on the activation of the macrophages compared to the control.

In conclusion, our data suggest that the modification of topography could influence the inflammatory potency of a biomaterial and hence could affect the biocompatibility of implants.

The establishment of a transgenic cell line was a second aim of this study. The human monocytic cell line THP-1 was transfected with a construct of the S100A8 gene (coding for one protein of the 27E10 epitope) and the coding sequence of the fluorochrome DsRed. During cultivation the gained positive clones seperated into two populations of which the smaller one (approx. 5% of entire population) expressed DsRed constitutively. After stimulation with PMA and PMA/LPS, respectively, inducing the expression of the 27E10 epitope the majority of the transgenic cells demonstrated DsRed fluorescence. These transgenic cells offer the opportunity to monitor inflammatory processes online and to investigate the expression kinetics of the 27E10 antigen by fluorescence.
7. Literaturverzeichnis

Sharon, J. L. and Puleo, D. A. (2008). "Immobilization of glycoproteins, such as VEGF, on biodegradable substrates." Acta Biomater.

Danksagung

Mein besonderer Dank gilt Frau Prof. Dr. G. Zwadlo-Klarwasser für die interessante Themenstellung und die sehr gute wissenschaftliche Betreuung meiner Promotion.

Bei Herrn Prof. Dr. K. Wolf bedanke ich mich herzlich für die freundliche Übernahme des Korefferats.

Meinen Freunden, insbesondere Anja, Martin und Claudia, danke ich für die aufmunternden Worte in Phasen der Verzweiflung und die großartige Freundschaft.

Ganz herzlich möchte ich mich bei meiner lieben Familie für die uneingeschränkte Unterstützung bedanken.
Lebenslauf

Persönliche Daten
Name: Nora Emilie Paul
Geburtsdatum: 15. April 1975
Geburtsort: Aachen

Schulausbildung
1981-1985 Grundschule Höfchens Weg, Aachen
1985-1995 Abitur am Einhard-Gymnasium, Aachen

Studium
2004-2008 Promotion im IZKF Biomat des Universitätsklinikums Aachen
Juli 2004 bis Juli 2007 Stipendiatin des DFG-Graduiertenkollegs ‘Biointerface’

Berufstätigkeit
Juli und August 2007 Wissenschaftliche Hilfskraft im IZKF Biomat des Universitätsklinikums Aachen
Seit September 2007 Wissenschaftliche Angestellte in der Klinik für Plastische Chirurgie, Hand- und Verbrennungs chirurgie des Universitätsklinikums Aachen

Tagungsbeiträge

Zitierfähige Abstracts

Publikationen
